Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Adsorption techniques are frequently used to eliminate particular forms of pesticides. This work aimed to describe the process of adsorbing abamectin (ABM) from aqueous systems onto adsorbents and some factors affecting the process effectiveness. Eichhornia crassipes, also known as water hyacinth (WH), was chemically processed utilizing calcium alginate-immobilized WH and sodium alginate as adsorbent. The response surface method (RSM) was implemented to enhance the operational aspects of the adsorption procedure on the removal of ABM residues from aqueous solution. The results show that 95.65% of the abamectin was removed under the optimum conditions of pH = 3, 1000 mg/L of immobilized WH, particle size = 5 µm, shaking speed = 200 rpm, and 30 mg/L of ABM concentration throughout 180 min contact time. The model’s predicted response results also show a decent agreement with the experimental data (R2 = 86.64%), proving the effectiveness of this approach for developing precise predictions. The responses were assessed using a second-order polynomial multiple regression model, which confirmed a successful adjustment with the obtained data using analysis of variance (R2 = 92.0%, R2 adj = 88.92%, and R2 pred = 82.92%). In conclusion, the results demonstrated the potential application and beneficial adsorption effectiveness of WH in removal of the pesticides from an aqueous solution.
Wydawca
Rocznik
Tom
Strony
150--157
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
autor
- Environmental Engineering Department, College of Engineering, University of Mosul, 41001, Mosul, Iraq
autor
- Environmental Engineering Department, College of Engineering, University of Mosul, 41001, Mosul, Iraq
autor
- Environmental Engineering Department, College of Engineering, University of Mosul, 41001, Mosul, Iraq
Bibliografia
- 1. Abdulrahman, M.S., Abdulsahib, H.T., Al-luaibi, S.S. 2018. Removal of selected pesticides from aqueous solution using cost effective soft drink bottles, 6(4), 132–137.
- 2. Ajala, O.J., Nwosu, F.O., Ahmed, R.K. 2018. Adsorption of atrazine from aqueous solution using unmodified and modified bentonite clays. Applied Water Science, 8(7), 1–11. doi:10.1007/s13201-018-0855-y.
- 3. Akbari, M., Hallajisani, A., Keshtkar, A.R., Shahbeig, H., Ali Ghorbanian, S. 2015. Equilibrium and kinetic study and modeling of Cu(II) and Co(II) synergistic biosorption from Cu(II)-Co(II) single and binary mixtures on brown algae C. indica. Journal of Environmental Chemical Engineering, 3(1), 140–149. doi:10.1016/j.jece.2014.11.004.
- 4. Ali, I., ALOthman, Z.A., Al-Warthan, A. 2016. Sorption, kinetics and thermodynamics studies of atrazine herbicide removal from water using iron nano-composite material. International Journal of Environmental Science and Technology, 13(2), 733–742. doi:10.1007/s13762-015-0919-6.
- 5. Amalina, F., Razak, A.S.A., Krishnan, S., Zularisam, A.W., Nasrullah, M. 2022. Water hyacinth (Eichhornia crassipes) for organic contaminants removal in water – A review. Journal of Hazardous Materials Advances, 7(August), 100092. doi:10.1016/j.hazadv.2022.100092.
- 6. Arif, H., Yasir, M., Ali, F., Nazir, A., Ali, A., Al Huwayz, M., Alwadai, N., Iqbal, M. 2023. Photocatalytic degradation of atrazine and abamectin using Chenopodium album leaves extract mediated copper oxide nanoparticles. Zeitschrift für Physikalische Chemie, 237(6), 689–705. doi:10.1515/zpch-2023-0224.
- 7. Areco, M.M., Hanela, S., Duran, J., dos Santos Afonso, M. 2012. Biosorption of Cu(II), Zn(II), Cd(II) and Pb(II) by dead biomasses of green alga Ulva lactuca and the development of a sustainable matrix for adsorption implementation. Journal of Hazardous Materials, 213–214, 123–132. doi:10.1016/j.jhazmat.2012.01.073.
- 8. Bai R,S., Abraham, T.E. 2001. Biosorption of Cr (VI) from aqueous solution by Rhizopus nigricans. Bioresource Technology, 79(1), 73–81. doi:10.1016/S0960-8524(00)00107-3.
- 9. Bingol, Az., Ucun, H., Bayhan, Y.K., Karagunduz, A., Cakici, A., Keskinler, B. 2004. Removal of chromate anions from aqueous stream by a cationic surfactant-modified yeast. Bioresource Technology, 94(3), 245–249. doi:10.1016/j.biortech.2004.01.018.
- 10. Cengiz, S., Tanrikulu, F., Aksu, S. 2012. An alternative source of adsorbent for the removal of dyes from textile waters: Posidonia oceanica (L.). Chemical Engineering Journal, 189–190, 32–40. doi:10.1016/j.cej.2012.02.015.
- 11. Kumar, P., Chauhan, M.S. 2019. Journal of environmental chemical engineering adsorption of chromium ( VI ) from the synthetic aqueous solution using chemically modi fi ed dried water hyacinth roots. Journal of Environmental Chemical Engineering, 7(4), 103218. doi:10.1016/j.jece.2019.103218.
- 12. Liu, C., Ye, J., Lin, Y., Wu, J., Price, G.W., Burton, D., Wang, Y. 2020. Removal of cadmium (II) using water hyacinth (Eichhornia crassipes) biochar alginate beads in aqueous solutions. Environmental Pollution, 264, 114785. doi:10.1016/j.envpol.2020.114785.
- 13. Madikizela, L.M. 2021. Removal of organic pollutants in water using water hyacinth (Eichhornia crassipes). Journal of Environmental Management, 295(March), 113153. doi:10.1016/j.jenvman.2021.113153.
- 14. Mahamadi, C., Mawere, E. 2014. High adsorption of dyes by water hyacinth fixed on alginate. Environmental Chemistry Letters, 12(2), 313–320. doi:10.1007/s10311-013-0445-z.
- 15. Majlesi, M., Hashempour, Y. 2017. Removal of 4-chlorophenol from aqueous solution by granular activated carbon/nanoscale zero valent iron based on Response Surface Modeling. Archives of Environmental Protection, 43(4), 13–25. doi:10.1515/aep-2017-0035.
- 16. Mishra, S., Cheng, L., Maiti, A. 2021. The utilization of agro-biomass/byproducts for effective bio-removal of dyes from dyeing wastewater: A comprehensive review. Journal of Environmental Chemical Engineering, 9(1), 104901. doi:10.1016/j.jece.2020.104901.
- 17. Ong, S.T., Lee, C.K., Zainal, Z. 2007. Removal of basic and reactive dyes using ethylenediamine modified rice hull. Bioresource Technology, 98(15), 2792–2799. doi:10.1016/j.biortech.2006.05.011.
- 18. Parvathi, K., Nagendran, R., Nareshkumar, R. 2007. Lead biosorption onto waste beer yeast byproduct, a means to decontaminate effluent generated from battery manufacturing industry. Electronic Journal of Biotechnology, 10(1). doi:10.2225/vol10-issue1-fulltext-13.
- 19. Sahoo, D., Awasthi, A., Dhyani, V., Biswas, B., Kumar, J., Reddy, Y.S., Adarsh, V.P., Puthiyamadam, A., Mallapureddy, K.K., Sukumaran, K.K., Ummalyma, S.B., Bhaskar, T. 2019. Value-addition of water hyacinth and para grass through pyrolysis and hydrothermal liquefaction. Carbon Resources Conversion, 2(3), 233–241. doi:10.1016/j.crcon.2019.08.001.
- 20. Salam, K., Agarry, S., Arinkoola, A., Shoremekun, I. 2015. Optimization of operating conditions affecting microbiologically influenced corrosion of mild steel exposed to crude oil environments using response surface methodology. British Biotechnology Journal, 7(2), 68–78. doi:10.9734/bbj/2015/16810.
- 21. Sayğili, H., Güzel, F. 2016. Effective removal of tetracycline from aqueous solution using activated carbon prepared from tomato (Lycopersicon esculentum Mill.) industrial processing waste. Ecotoxicology and Environmental Safety, 131, 22–29. doi:10.1016/j.ecoenv.2016.05.001.
- 22. Singh, N., & Balomajumder, C. (2021). Phytoremediation potential of water hyacinth (Eichhornia crassipes) for phenol and cyanide elimination from synthetic/simulated wastewater. Applied Water Science, 11(8), 144. https://doi.org/10.1007/s13201-021-01472-8
- 23. Srivastava, A., Jangid, N.K., Srivastava, M. 2018. Pesticides as water pollutants, (September). doi:10.4018/978-1-5225-6111-8.ch001.
- 24. Vasanth Kumar, K., Ramamurthi, V., Sivanesan, S. 2006. Biosorption of malachite green, a cationic dye onto Pithophora sp., a fresh water algae. Dyes and Pigments, 69(1–2), 102–107. doi:10.1016/j.dyepig.2005.02.005.
- 25. Vijayaraghavan, K., Han, M.H., Choi, S.B., Yun, Y.S. 2007. Biosorption of reactive black 5 by Corynebacterium glutamicum biomass immobilized in alginate and polysulfone matrices. Chemosphere, 68(10), 1838–1845. doi:10.1016/j.chemosphere.2007.03.030.
- 26. Vijayaraghavan, K., Yun, Y.S. 2008. Bacterial biosorbents and biosorption. Biotechnology Advances, 26(3), 266–291. doi:10.1016/j.biotechadv.2008.02.002.
- 27. Wanyonyi, W.C., Onyari, J.M., Shiundu, P.M. 2014. Adsorption of congo red dye from aqueous solutions using roots of eichhornia crassipes: Kinetic and equilibrium studies. Energy Procedia, 50, 862–869. doi:10.1016/j.egypro.2014.06.105.
- 28. Yerima, E.A., Ogwuche, E., Ndubueze, C.I., Muhammed, K.A., Habila, J.D. 2024. Photocatalytic degradation of acid blue 25 dye in wastewater by zinc oxide nanoparticles. Trends in Ecological and Indoor Environment Engineering, 2(1), 50–55. doi:10.62622/TEIEE.024.2.1.50-55.
- 29. Zhang, Y., Kogelnig, D., Morgenbesser, C., Stojanovic, A., Jirsa, F., Lichtscheidl-Schultz, I., Keppler, B.K. 2011. Preparation and characterization of immobilized [A336][MTBA] in PVA-alginate gel beads as novel solid-phase extractants for an efficient recovery of Hg (II) from aqueous solutions. Journal of Hazardous Materials, 196, 201–209. doi:10.1016/j.jhazmat.2011.09.018.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b5b16102-8fa9-4867-a0a0-fb6c1def0f00
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.