PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Habitaty księżycowe: przegląd rozwiązań i perspektywy na przyszłość

Autorzy
Identyfikatory
Warianty tytułu
EN
Lunar habitats: review of solutions and future prospects
Języki publikacji
PL
Abstrakty
PL
Habitaty księżycowe są konstrukcjami, których zadaniem jest zapewnienie w ich wnętrzu warunków przyjaznych człowiekowi. Środowisko Księżyca znacznie różni się od ziemskiego, przez co wymagania stawiane tym konstrukcjom są inne niż wobec znanych nam obiektów mieszkalnych. Konstrukcje habitatów można podzielić na trzy klasy: konstrukcje gotowe (klasa I), konstrukcje prefabrykowane (klasa II) oraz konstrukcje wznoszone na powierzchni Księżyca, w myśl koncepcji ISRU (klasa III). Z perspektywy budownictwa najciekawsze rozwiązania zawiera klasa III. Propozycje habitatów zaliczanych do tej klasy często mają postacie kopuł lub torusów, a technologie ich wznoszenia opierają się między innymi na druku 3D z wykorzystaniem materiałów wytwarzanych na bazie regolitu księżycowego.
EN
Function of lunar habitats structures is to ensure human friendly environment inside. Lunar environment differs from the Earth one, thus also requirements for lunar habitats differ from requirements for well-known residential buildings. Lunar habitats can be divided into three Classes: Pre-Integrated (Class I), Pre-Fabricated (Class II), and In-Situ Derived and Constructed in line with practice called ISRU (Class III). From Civil Engineering point of view the most interesting is Class III. Concepts of habitats belonging to this class are often dome-shaped or toroidal structures, which technology of erection includes among others 3D print methods with usage of lunar regolith-based materials.
Rocznik
Strony
657--661
Opis fizyczny
Bibliogr. 46 poz., il., tab.
Twórcy
  • Politechnika Śląska, Wydział Budownictwa
Bibliografia
  • [1] NASA - NASA Langley Research Center Contributions to the Apollo Program: https://www.nasa.gov/centers/langley/news/factsheets/Apollo.html (dostęp 15.06.2023).
  • [2] Lunar Exploration Timeline: https://nssdc.gsfc.nasa.gov/planetary/lunar/lunartimeline.html (dostęp 15.06.2023).
  • [3] Creech S., Guidi J., Elburn D.: Artemis: An Overview of NASA's Activities to Return Humans to the Moon. 2022 IEEE Aerospace Conference (AERO) (Mar. 2022), 1-7.
  • [4] Stern S.A.: The lunar atmosphere: History, status, current problems, and context. "Reviews of Geophysics", 37/4/1999, DOI 10.1029/1999RG900005.
  • [5] Hörz F, Basilevsky A.T., Head J.W., Cintala M.J.: Erosion of lunar surface rocks by impact processes: A synthesis. "Planetary and Space Science", 194/2020, DOI 10.1016/j.pss.2020.105105.
  • [6] Vanzani V., Marzari F., Dotto E.: Micrometeoroid impacts on the lunar surface. (Houston, Texas, Mar. 1997).
  • [7] Pyle R.: First on the Moon: the Apollo 11 50th anniversary experience. Sterling. New York. 2019.
  • [8] Reitz G., Berger T., Matthiae D.: Radiation exposure in the moon environment. "Planetary and Space Science", 74/1/2012, DOI 10.1016/j.pss.2012.07.014.
  • [9] Benaroya H.: Lunar habitats: A brief overview of issues and concepts. "REACH", 7-8/2017, DOI 10.1016/j.reach.2018.08.002.
  • [10] Fross K., Dziaduła W.: Analogowe habitaty kosmiczne - badania i koncepcja własna. "BUILDER", 296/3/2022, DOI 10.5604/01.3001.0015.7363.
  • [11] NASA: NASA Apollo Spacecraft Lunar Excursion Module News Reference. Periscope Film LLC. 2011.
  • [12] Kennedy K.: The Vernacular of Space Architecture. AIAA Space Architecture Symposium (Houston, Texas, Oct. 2002).
  • [13] Donahue B., Caplin G., Smith D.: Lunar Lander Concept Design for the 2019 NASA Outpost Mission. AIAA SPACE 2007 Conference & Exposition (Long Beach, California, Sep. 2007).
  • [14] Vogler A.: Modular Inflatable Space Habitats. (Noordwijk, May 2022).
  • [15] Aulesa V., Ruiz F., Casanova I.: Structural Requirements for the Construction of Shelters on Planetary Surfaces. Space 2000 (Albuquerque, New Mexico, United States, Feb. 2000), 403-409.
  • [16] NASA - Camping on the Moon Will Be One Far Out Experience: https://www.nasa.gov/centers/langley/news/researchernews/rn_inflatablelunar-hab.html (dostęp 28.06.2023).
  • [17] Artist impression of activities in a Moon Base: https://www.esa.int/ESA_Multimedia/Images/2019/07/Artist_impression_of_activities_in_a_Moon_Base (dostęp 20.07.2023).
  • [18] Metzger P.T., Autry G.W.: The Cost of Lunar Landing Pads with a Trade Study of Construction Methods. "New Space", 11/2/2023, DOI 10.1089/space.2022.0015.
  • [19] Wang Y., Hao L., Li Y., Sun Q., Sun M., Huang Y., Li Z., Tang D., Wang Y., Xiao L.: In-situ utilization of regolith resource and future exploration of additive manufacturing for lunar/martian habitats: A review. "Applied Clay Science", 229/2022, DOI 10.1016/j.clay.2022.106673.
  • [20] Motamedi M., Mesnil R., Oval R., Baverel O.: Scaffold-free 3D printing of shells: Introduction to patching grammar. "Automation in Construction", 139/2022, DOI 10.1016/j.autcon.2022.104306.
  • [21] Cesaretti G., Dini E., De Kestelier X., Colla V., Pambaguian L.: Building components for an outpost on the Lunar soil by means of a novel 3D printing technology. "Acta Astronautica", 93/2014, DOI 10.1016/j.actaastro.2013.07.034.
  • [22] Mueller R., Prater T., Roman M., Edmunson J., Fiske M., Carrato P.: NASA Centennial Challenge: 3D Printed Habitat, Phase 3 Final Results.
  • [23] Juračka D., Katzer J., Kobaka J., Świca I., Seweryn K.: Concept of a 3D-Printed Voronoi Egg-Shaped Habitat for Permanent Lunar Outpost. "Applied Sciences", 13/2/2023, DOI 10.3390/app13021153.
  • [24] Lin C.W., Mattei G., Cheibas I., Du C., Aejmelaeus-Llndström P., Gramazio F: PneuPrint: 3D printing on inflatables. "Architecture, Structures and Construction", 3/2/2023, DOI 10.1007/s44150-023-00092-x.
  • [25] Goulas A., Harris R.A., Friel R.J.: Additive manufacturing of physical assets by using ceramic multicomponent extra-terrestrial materials. "Additive Manufacturing", 10/2016, DOI 10.1016/j.addma.2016.02.002.
  • [26] Lim S., Buswell R.A., Le T.T., Austin S.A., Gibb A.G.F., Thorpe T.: Developments in construction-scale additive manufacturing processes. "Automation in Construction", 21/2012, DOI 10.1016/j.autcon.2011.06.010.
  • [27] Yuan P.F., Zhou X., Wu H., Zhang L., Guo L., Shi Y., Lin Z., Bai J., Yu Y., Yang S.: Robotic 3D printed lunar bionic architecture based on lunar regolith selective laser sintering technology. "Architectural Intelligence", 1/1/2022, DOI 10.1007 /s44223-022-00014-9.
  • [28] Le T.T., Austin S.A., Lim S., Buswell R.A., Gibb A.G.F., Thorpe T.: Mix design and fresh properties for high-performance printing concrete. "Materials and Structures", 45/8/2012, DOI 10.1617/s11527-012-9828-z.
  • [29] Taylor S.R.: Lunar science: a post-Apollo view: scientific results and insights from the lunar samples. Pergamon Press. New York, N.Y. Braunschweig. 1975.
  • [30] Orloff R.W.: Apollo by the numbers: a statistical reference. National Aeronautics and Space Administration. Washington, D.C. 2000.
  • [31] Planetary Simulant Database: https://simulantdb.com/index.php (dostęp 8.08.2023).
  • [32] Bednarz S., Rzyczniak M., Gonet A., Seweryn K.: Research of Formed Lunar Regholit Analog AGK-2010 / Badania wytworzonego analogu gruntu księżycowego AGK-2010. "Archives of Mining Sciences", 58/2/2013, DOI 10.2478/amsc-2013-0037.
  • [33] Kobaka J., Katzer J., Seweryn K., Srokosz P., Bujko M., Konečný P.: A study of lunar soil simulants from construction and building materials perspective. "Case Studies in Construction Materials", 18/2023, DOI: 10.1016/j.cscm.2023.e02082.
  • [34] Fateri M., Sottong R., Kolbe M., Gamer J., Sperl M., Cowley A.: Thermal properties of processed lunar regolith simulant. "International Journal of Applied Ceramic Technology", 16/6/2019, DOI 10.1111/ijac.13267.
  • [35] Atkinson J., Zacny K.: Mechanical Properties of Icy Lunar Regolith: Application to ISRU on the Moon and Mars. Earth and Space 2018 (Cleveland, Ohio, Nov. 2018), 109-120.
  • [36] Davis G., Montes C., Eklund S.: Preparation of lunar regolith based geopolymer cement under heat and vacuum. "Advances in Space Research", 59/7/2017, DOI 10.1016/j.asr.2017.01.024.
  • [37] Zhang R., Zhou S., Li F.: Preparation of geopolymer based on lunar regolith simulant at in-situ lunar temperature and its durability under lunar high and cryogenic temperature. "Construction and Building Materials", 318/2022, DOI 10.1016/j.conbuildmat.2021.126033.
  • [38] Neves J.M., Ramanathan S., Suraneni P., Grugel R., Radlińska A.: Characterization, mechanical properties, and microstructural development of lunar regolith simulant-portland cement blended mixtures. "Construction and Building Materials", 258/2020, DOI 10.1016/j.conbuildmat.2020.120315.
  • [39] Sik Lee T., Lee J., Yong Ann K.: Manufacture of polymeric concrete on the Moon. "Acta Astronautica", 114/2015, DOI 10.1016/j.actaastro.2015.04.004.
  • [40] Toutanji H., Fiske M.R., Bodiford M.P.: Development and Application of Lunar "Concrete" for Habitats. Earth and Space 2006 (League City/Houston, Texas, United States, Mar. 2006), 1-8.
  • [41] Roberts A., Whittall D., Breitling R., Takano E., Blaker J., Hay S., Srutton N.: Blood, sweat and tears: extraterrestrial regolith biocomposites with in vivo binders. "Materials Today Bio", 12/2021, DOI 10.1016/j.mtbio.2021.100136.
  • [42] Pilehvar S., Arnhof M., Erichsen A., Valentini L., Kjøniksen A.-L.: Investigation of severe lunar environmental conditions on the physical and mechanical properties of lunar regolith geopolymers. "Journal of Materials Research and Technology", 11/2021, DOI 10.1016/j.jmrt.2021.01.124.
  • [43] Dikshit R., Dey A., Gupta N., Varma S.C., Venugopal I., Viswanathan K., Kumar A.: Space bricks: From LSS to machinable structures via MICP. "Ceramics International", 47/10/2021, DOI 10.1016/j.ceramint.2020.07.309.
  • [44] Mrozek D., Gryczyńska Z., Matłosz M.: Jak próżnia wpływa na wytrzymałość stwardniałego betonu? II Studencka Konferencja Kosmiczna (Wrocław, 2022).
  • [45] Mrozek M., Kula J., Błatoń B.: Co się dzieje z mieszanką betonową w próżni? II Studencka Konferencja Kosmiczna (Wrocław, 2022).
  • [46] Innscience: https://innspace.pl/innscience/ (dostęp 8.08.2023).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b5b1285f-1d6f-4dca-ad9b-88024f00a662
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.