PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The purpose of this article is to present and evaluate a proposed rigid registration method in the application of real-time fusion of pre-operative 3DCT images and intraoperative 2DUS images. Methods: A universal hybrid automatic rigid registration method was proposed, which allows registration of preoperative contrast enhanced CT with intraoperative 2D ultrasound images (neither CEUS nor 3DUS is required), with the possibility of manual correction. The method is based on automatically detectable markers, clearly identified in preoperative CT images, and by optical position tracking system during the procedure. A two-step fusion accuracy assessment was used. The first stage, the initial fusion assessment, was carried out at the time of the procedure. The second, objective stage (the final fusion assessment) was carried out after the procedure, and was based on the image and location data collected during the procedure. The clinical evaluation of the method was performed on 20 patients. Results: For IFA and for Fusion Stability Assessment evaluation steps the following results were obtained, respectively: no fusion disorder: 10, good overlay: 8, permanently wrong fusion: 2 and no fusion disorders: 8, short-term fusion disorders: 9, frequent fusion disorders:3. The RMSE descriptive statistics (presenting order: median (first quartile third quartile) [min max]) was 8.87 (6.46 12.76) [5.04 18.84] mm.
Twórcy
  • Evertop Sp. z o. o., 1-3 Dluga, 41-506 Chorzów, Poland
  • Evertop Sp. z o. o., Chorzów, Poland
  • Evertop Sp. z o. o., Chorzów, Poland
autor
  • Evertop Sp. z o. o., Chorzów, Poland
  • Evertop Sp. z o. o., Chorzów, Poland
  • Evertop Sp. z o. o., Chorzów, Poland
autor
  • Silesian University of Technology, Faculty of Biomedical Engineering, Zabrze, Poland
  • Silesian University of Technology, Faculty of Biomedical Engineering, Zabrze, Poland
autor
  • Silesian University of Technology, Faculty of Biomedical Engineering, Zabrze, Poland
  • Purdue University, Weldon School of Biomedical Engineering, West Lafayette, IN 47907, USA
  • II Department of Radiology, Medical University of Warsaw, Warsaw, Poland
  • II Department of Radiology, Medical University of Warsaw, Warsaw, Poland
  • II Department of Radiology, Medical University of Warsaw, Warsaw, Poland
  • II Department of Radiology, Medical University of Warsaw, Warsaw, Poland
  • II Department of Radiology, Medical University of Warsaw, Warsaw, Poland
autor
  • Silesian University of Technology, Faculty of Biomedical Engineering, Zabrze, Poland
Bibliografia
  • [1] Viganò L, Laurenzi A, Solbiati L, Procopio F, Cherqui D, Torzilli G. Open liver resection, laparoscopic liver resection, and percutaneous thermal ablation for patients with solitary small hepatocellular carcinoma (≤30 mm): review of the literature and proposal for a therapeutic strategy. Dig Surg 2018;35:359–71. http://dx.doi.org/10.1159/000489836.
  • [2] Luu HM, Klink C, Niessen W, Moelker A, Van Walsum T. Non-rigid registration of liver CT images for CT-guided ablation of liver tumors. PLoS One 2016;11. http://dx.doi.org/10.1371/journal.pone.0161600.
  • [3] Pohlman RM, Turney MR, Wu PH, Brace CL, Ziemlewicz TJ, Varghese T. Two-dimensional ultrasound-computed tomography image registration for monitoring percutaneous hepatic intervention. Med Phys 2019;46: 2600–9. http://dx.doi.org/10.1002/mp.13554.
  • [4] D'Onofrio M, Beleù A, Gaitini D, Corréas JM, Brady A, Clevert D. Abdominal applications of ultrasound fusion imaging technique: liver, kidney, and pancreas. Insights Imaging 2019;10. http://dx.doi.org/10.1186/s13244-019-0692-z.
  • [5] Kelekis AD, Terraz S, Roggan A, Terrier F, Majno P, Mentha G, et al. Percutaneous treatment of liver tumors with an adapted probe for cooled-tip, impedance-controlled radio-frequency ablation under open-magnet MR guidance: initial results. Eur Radiol 2003;13:1100–5. http://dx.doi.org/10.1007/s00330-003-1847-2.
  • [6] Rossi D, Bonomo G, Della Vigna P, Monfardini L, Orsi F, Solbiati L, et al. The role of ultrasound and cone beam CT fusion for guidance of thermal liver ablation; 2019.
  • [7] Monfardini L, Orsi F, Caserta R, Sallemi C, Della Vigna P, Bonomo G, et al. Ultrasound and cone beam CT fusion for liver ablation: technical note. Int J Hyperthermia 2018;35:500–4. http://dx.doi.org/10.1080/02656736.2018.1509237.
  • [8] Bing F, Vappou J, Breton E, Enescu I, Garnon J, Gangi A. Accuracy of a CT-Ultrasound fusion imaging guidance system used for hepatic percutaneous procedures. J Vasc Interv Radiol 2019;30:1013–20. http://dx.doi.org/10.1016/j.jvir.2018.11.034.
  • [9] Lee D, Nam WH, Lee JY, Ra JB. Non-rigid registration between 3D ultrasound and CT images of the liver based on intensity and gradient information. Phys Med Biol 2011;56:117–37. http://dx.doi.org/10.1088/0031-9155/56/1/008.
  • [10] Huang S, wu K, Meng X, Li C. Non-rigid registration method between 3D CT liver data and 2D ultrasonic images based on demons model; 2019;1–15.
  • [11] Lee JY, Choi BI, Chung YE, Kim MW, Kim SH, Han JK. Clinical value of CT/MR-US fusion imaging for radiofrequency ablation of hepatic nodules. Eur J Radiol 2012;81:2281–9. http://dx.doi.org/10.1016/j.ejrad.2011.08.013.
  • [12] Mauri G, Cova L, De Beni S, Ierace T, Tondolo T, Cerri A, et al. Real-time US-CT/MRI image fusion for guidance of thermal ablation of liver tumors undetectable with US: results in 295 cases. Cardiovasc Intervent Radiol 2015. http://dx.doi.org/10.1007/s00270-014-0897-y.
  • [13] Luthi M, Gerig T, Jud C, Vetter T. Gaussian process morphable models. IEEE Trans Pattern Anal Mach Intell 2018;40:1860–73. http://dx.doi.org/10.1109/TPAMI.2017.2739743.
  • [14] Spinczyk D, Zyklowski J, Wrob́lewski T. Continuous registration based on computed tomography for breathing motion compensation. Videosurgery Other Miniinvasive Tech 2013;8:265–72. http://dx.doi.org/10.5114/wiitm.2013.39505.
  • [15] Spinczyk D. Image-based guidance of percutaneous abdomen intervention based on markers for semi-automatic rigid registration. Videosurgery Other Miniinvasive Tech 2014;4:531–6. http://dx.doi.org/10.5114/wiitm.2014.45048.
  • [16] Spinczyk D, Badura A, Sperka P, Stronczek M, Pycinski B, Juszczyk J, et al. Supporting diagnostics and therapy planning for percutaneous ablation of liver and abdominal tumors and pre-clinical evaluation. Comput Med Imaging Graph 2019101664. http://dx.doi.org/10.1016/J.COMPMEDIMAG.2019.101664.
  • [17] Denys A, Lachenal Y, Duran R, Chollet-Rivier M, Bize P. Use of high-frequency jet ventilation for percutaneous tumor ablation. Cardiovasc Intervent Radiol 2014;37:140–6. http://dx.doi.org/10.1007/s00270-013-0620-4.
  • [18] Puijk RS, Ruarus AH, Scheffer HJ, Vroomen LGPH, van Tilborg AAJM, de Vries JJJ, et al. Percutaneous liver tumour ablation: image guidance, endpoint assessment, and quality control. Can Assoc Radiol J 2018;69:51–62. http://dx.doi.org/10.1016/j.carj.2017.11.001.
  • [19] Claron Nav Hx40 - specification n.d. https://www.claronav.com/microntracker/ microntracker-specifications/.
  • [20] Spinczyk D. Marker and method for automatic positioning of a patient, preferably in the image navigation systems. PL 406230, Polish Patent Office, June 8, 2015.
  • [21] Horn BKP, Hilden HM, Negahdaripourt S. Closed-form solution of absolute orientation using orthonormal matrices. Vol. 5; 1988.
  • [22] Lasso A, Heffter T, Rankin A, Pinter C, Ungi T, Fichtinger G. PLUS: open-source toolkit for ultrasound-guided intervention systems. IEEE Trans Biomed Eng 2014;61: 2527–37. http://dx.doi.org/10.1109/TBME.2014.2322864.
  • [23] Marden S, Guivant J. Improving the performance of ICP for real-time applications using an approximate nearest neighbour search. Australas Conf Robot Autom ACRA 2012.
  • [24] Kang TW, Lee MW, Cha DI, Park HJ, Park HJ, Bang WC, et al. Usefulness of virtual expiratory CT images to compensate for respiratory liver motion in ultrasound/CT image fusion: a prospective study in patients with focal hepatic lesions. Korean J Radiol 2019;20:225–35. http://dx.doi.org/10.3348/kjr.2018.0320.
  • [25] Wein W, Brunke S, Khamene A, Callstrom MR, Navab N. Automatic CT-ultrasound registration for diagnostic imaging and image-guided intervention. Med Image Anal 2008;12:577–85. http://dx.doi.org/10.1016/j.media.2008.06.006.
  • [26] Mauri G, De Beni S, Forzoni L, D'Onofrio S, Kolev V, Lagana MM, et al. Virtual navigator automatic registration technology in abdominal application. 2014 36th Annu Int Conf IEEE Eng Med Biol Soc EMBC 2014;2014:5570–4. http://dx.doi.org/10.1109/EMBC.2014.6944889.
  • [27] Tang H, Tang Y, Hong J, Chen T, Mai C, Jiang P. A measure to assess the ablative margin using 3D-CT image fusion after radiofrequency ablation of hepatocellular carcinoma. HPB 2015;17:318–25. http://dx.doi.org/10.1111/hpb.12352.
  • [28] Hakime A, Deschamps F, De Carvalho EGM, Teriitehau C, Auperin A, De Baere T. Clinical evaluation of spatial accuracy of a fusion imaging technique combining previously acquired computed tomography and real-time ultrasound for imaging of liver metastases. Cardiovasc Intervent Radiol 2011;34:338–44. http://dx.doi.org/10.1007/s00270-010-9979-7.
  • [29] AJ L, Kalra N, Bhatia A, Srinivasan R, Gulati A, Kapoor R, et al. Fusion image–guided and ultrasound-guided fine needle aspiration in patients with suspected hepatic metastases. J Clin Exp Hepatol 2019;9:547–53. http://dx.doi.org/10.1016/j.jceh.2019.01.003.
  • [30] Yamid E, Özgür E, Calvet L, Le Roy B, Buc E, Bartoli A. Combining visual cues and interactions for 3D-2D registration in liver laparoscopy; 2020;3–6. http://dx.doi.org/10.1007/s10439-020-02479-z.
  • [31] Robu MR, Ramalhinho J, Thompson S, Gurusamy K, Davidson B, Hawkes D, et al. Global rigid registration of CT to video in laparoscopic liver surgery. Int J Comput Assist Radiol Surg 2018;13:947–56. http://dx.doi.org/10.1007/s11548-018-1781-z.
  • [32] Fusaglia M, Tinguely P, Banz V, Weber S, Lu H. A novel ultrasound-based registration for image-guided laparoscopic liver ablation. Surg Innov 2016;23:397–406. http://dx.doi.org/10.1177/1553350616637691.
  • [36] Che C, Mathai TS, Galeotti J. Ultrasound registration: a review. Methods 2017;115:128–43. http://dx.doi.org/10.1016/j.ymeth.2016.12.006.
  • [37] Weia W, Xub H, Alpersa J, Tianbaob Z, Wangb L, Marko R, et al. Fast registration for liver motion compensation in ultrasound guided navigation. 2019 IEEE 16th Int Symp Biomed Imaging (ISBI 2019) 2019;1132–6.
  • [38] Cazoulat G, Elganainy D, Anderson BM, Zaid M, Park PC, Koay EJ, et al. Vasculature-driven biomechanical deformable image registration of longitudinal liver cholangiocarcinoma computed tomographic scans. Adv Radiat Oncol 2019;1–10. http://dx.doi.org/10.1016/j.adro.2019.10.002.
  • [39] Hendriks P, Noortman WA, Baetens TR, Van Erkel AR, Van Rijswijk CSP, Van Der Meer RW, et al. Quantitative volumetric assessment of ablative margins in hepatocellular carcinoma: predicting local tumor progression using nonrigid registration software. J Oncol 2019;2019. http://dx.doi.org/10.1155/2019/4049287.
  • [40] Kanoulas E, Butler M, Rowley C, Voulgaridou V, Diamantis K, Duncan WC, et al. Super-resolution contrast-enhanced ultrasound methodology for the identification of in vivo vascular dynamics in 2D. Invest Radiol 2019;54:500–16. http://dx.doi.org/10.1097/RLI.0000000000000565.
  • [41] Yuan C, Wang Z, Gu D, Tian J, Zhao P, Wei J, et al. Prediction early recurrence of hepatocellular carcinoma eligible for curative ablation using a Radiomics nomogram. Cancer Imaging 2019;19:1–12. http://dx.doi.org/10.1186/s40644-019-0207-7.
  • [42] Lee M, Son T. Helical slot antenna for the microwave ablation. Int J Antennas Propag 2019;2019. http://dx.doi.org/10.1155/2019/2126879.
  • [43] Gas P. Optimization of multi-slot coaxial antennas for microwave thermotherapy based on the S11-parameter analysis. Biocybern Biomed Eng 2017;37:78–93. http://dx.doi.org/10.1016/j.bbe.2016.10.001.
  • [44] Tomonari A, Tsuji K, Yamazaki H, Aoki H, Kang JH, Kodama Y, et al. Feasibility of the virtual needle tracking system for percutaneous radiofrequency ablation of hepatocellular carcinoma. Hepatol Res 2013;43:1352–5. http://dx.doi.org/10.1111/hepr.12096.
  • [45] Hirooka M, Koizumi Y, Imai Y, Ochi H, Nakamura Y, Yoshida O, et al. Assessment of a needle-tracking system for bipolar radiofrequency ablation. J Med Ultrason (2001) 2016;43:185–91. http://dx.doi.org/10.1007/s10396-015-0679-4.
  • [46] Li ADR, Plott J, Chen L, Montgomery JS, Shih A. Needle deflection and tissue sampling length in needle biopsy. J Mech Behav Biomed Mater 2020;104103632. http://dx.doi.org/10.1016/j.jmbbm.2020.103632.
Uwagi
W opisie bibliogr. brak poz. nr 33-35.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b5add486-006f-4299-9043-b3bbaa47a0e5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.