PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation on Stripping-down TNT from Waste Munitions by Supercritical CO2 Fluid Extraction under Low Temperature Conditions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The traditional methods of waste munitions treatment are expensive and also have potential risks during the treatment process. The supercritical fluid extraction technique has been a rapidly developing technique in the chemical industry in recent years. CO2 is used as the solvent, which has some advantages, such as low pollution, low cost, good chemical stability and can be operated under low temperature conditions. This research explored the feasibility of reclaiming TNT from waste munitions by supercritical CO2 fluid extraction. It was found interestingly that the melting point of TNT can be lowered in supercritical CO2 fluid. Therefore, the melting process of TNT was observed under different temperature and pressure conditions to determine the best operating conditions for stripping-down TNT from waste munitions. Afterwards, simulated warheads with weight loadings of 60 g, 500 g and 1 kg of TNT were prepared and stripping-down tests from the simulated warheads were carried out using supercritical CO2 fluid at temperatures lower than the normal melting point of TNT. The results showed that TNT could be completely removed from the simulated warheads and the optimum operating conditions were determined as 55 °C and 25 MPa. This study will contribute to the feasibility evaluation of stripping-down TNT-based high explosives.
Rocznik
Strony
191--205
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
  • Department of Chemical and Materials Engineering, Chung Cheng Institute of Technology, National Defense University, Taoyuan, Taiwan, ROC
  • Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan, ROC
autor
  • Department of Chemical and Materials Engineering, Chung Cheng Institute of Technology, National Defense University, Taoyuan, Taiwan, ROC
autor
  • Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan, ROC
autor
  • Department of Chemical and Materials Engineering, Chung Cheng Institute of Technology, National Defense University, Taoyuan, Taiwan, ROC
autor
  • Department of Chemical and Materials Engineering, Chung Cheng Institute of Technology, National Defense University, Taoyuan, Taiwan, ROC
Bibliografia
  • [1] Wilkinson, J.; Watt, D. Review of Demilitarisation and Disposal Techniques for Munitions and Related Materials. Munitions Safety Information Analysis Centre (MSIAC), NATO Headquarters, Brussels, Belgium 2005, pp. 1-4.
  • [2] Safe Disposal of Munitions, Design Principles and Requirements, and Safety Assessment. NATO Standardization Agreement 4518 (Edition 1), North Atlantic Treaty Organization (NATO), Promulgated on 8 October 2001, pp. 2-6.
  • [3] Environmental Impact of Munition and Propellant Disposal. NATO RTO Technical Report TR-AVT-115: North Atlantic Treaty Organization (NATO), Published February, 2010.
  • [4] Mainiero, R. J.; Miron, Y.; Kwak, S. S. W.; Kopera, L. H.; Wheeler, J. Q. Impact, Thermal, and Shock Sensitivity of Molten TNT and of Asphalt-contaminated Molten TNT. Proc. 22nd Annu. Conf. Explosives and Blasting Technique, Orlando 1996, 179-197.
  • [5] McCall, B. C. Autoclave Meltout of Cast Explosives. Proc. 27th DoD Explosives Safety Seminar, Las Vegas, 20-22 August 1996, 1-9.
  • [6] Machida, H.; Takesue, M.; Smith, Jr, R. L. Green Chemical Processes with Supercritical Fluids: Properties, Materials, Separations and Energy. J. Supercrit. Fluids 2011, 60: 2-15.
  • [7] Kuchurov, I. V.; Zharkov, M. N.; Fershtat, L. L.; Makhova, N. N.; Zlotin, S. G. Prospective Symbiosis of Green Chemistry and Energetic Materials. ChemSusChem Vol. 10, 2017, 20: 3914-3946.
  • [8] Essel, J. T.; Cortopassi, A. C.; Kuo, K. K.; Leh, C. G.; Adair, J. H. Formation and Characterization of Nano-sized RDX Particles Produced Using the RESS-AS Process. Propellants Explos. Pyrotech. 2012, 37(6): 699-706.
  • [9] Risse, B.; Schnell, F.; Spitzer, D. Synthesis and Desensitization of Nano-β-HMX. Propellants Explos. Pyrotech. 2014, 39(3): 397-401.
  • [10] Priamo, W. L.; Dalmolin, I.; Boschetto, D. L.; Mezzomo, N.; Falvador, S. R. S.; Oliveira, J. V. Micronization Processes by Supercritical Fluid Technologies: a Short Review on Process Design (2008-2012). Acta Sci-technol. 2013, 35(4): 695-709.
  • [11] Tang, W.; Li, Y.; Ying, S. Fabrication of Graded Porous and Skin-core Structure RDX-based Propellants via Supercritical CO2 Concentration Profile. J. Energ. Mater. 2015, 33(2): 91-101.
  • [12] Kumar, R.; Siril, P. F.; Soni, P. Tuning the Particle Size and Morphology of High Energetic Material Nanocrystals. Defence Technology 2015, 11(4): 382-389.
  • [13] Zhang, J.; Gu, J.; Han, Y.; Li, W.; Gan, Z.; Gu, J. Supercritical Water Oxidation vs. Supercritical Water Gasification: Which Process Is Better for Explosive Wastewater Treatment? Ind. Eng. Chem. Res. 2015, 54 (4): 1251-1260.
  • [14] Ferreira, C.; Ribeiro, J.; Mendes, R.; Freire, F. Life-cycle Assessment of Ammunition Demilitarization in a Static Kiln. Propellants Explos. Pyrotech. 2013, 38(2): 296-302.
  • [15] Tao, G.; Qi, S. F.; Wang, S. M.; Ding, W. The Application of Large Quantities of Waste Ammunition Blasting Destruction Technology. Engineering Blasting 2011, 17(2): 89-91.
  • [16] Hloch, S.; Tozan, H.; Yagimli, M.; Valíček, J.; Rokosz, K. Using Waterjet in Reverse Logistic Operations in Discarded Munitions Processing. Technical Gazette 2011, 18(2): 267-271.
  • [17] Teipel, U.; Gerber, P.; Krause, H. H. Characterization of the Phase Equilibrium of the System Trinitrotoluene/Carbon Dioxide. Propellants Explos. Pyrotech. 1998, 23: 82-85.
  • [18] Morris. J. B.; Schroeder, M. A.; Pesce-Rodriguez, R. A.; McNesby, K. L.; Fifer, R. A. Supercritical Fluid Extraction of Nitramine-Based Gun Propellant: A Fluid Survey. (ARL-TR-885), Army Research Laboratory, MD, USA 1995.
  • [19] Morris, J. B. Solubility Measurements of Selected Energetic Materials and Inert Binders in Supercritical Carbon Dioxide. 1996 JANNAF Propellant Development and Characterization Subcommittee Meeting, Ottawa, 15-18 April 1996, CPIA Publication 642: 213-220.
  • [20] Morris, J. B. Method for Recovery and Separation of Trinitrotoluene by Supercritical Fluid Extraction. Patent US 5,953,679, Secretary of Army, Washington, D.C. 1999.
  • [21] Pourmortazavi, S. M.; Hajimirsadeghi, S. S. Application of Supercritical Carbon Dioxide in Energetic Materials Processes: a Review. Ind. Eng. Chem. Res. 2005, 44: 6523-6533.
  • [22] Lucien, F. P.; Foster, N. R. Solubilities of Solid Mixtures in Supercritical Carbon Dioxide: a Review. J. Supercrit. Fluid 2000, 17: 111-134.
  • [23] Lian, Z.; Epstein, S. A.; Blenk, C. W.; Shine, A. D. Carbon Dioxide-induced Melting Point Depression of Biodegradable Semicrystalline Polymers. J. Supercrit. Fluid 2006, 39: 107-117.
  • [24] Pasquali, I.; Comi, L.; Pucciarelli, F.; Bettini, R. Swelling, Melting Point Reduction and Solubility of PEG 1500 in Supercritical CO2. Int. J. Pharm. 2008, 356: 76-81.
  • [25] Li, J. S.; Yeh, T. F.; Lu, K. T.; Chiu, Y. H.; Chen, S. H. Method for Reclaiming High Explosive from Warhead by Melting-out in Supercritical Fluid. Patent US 20130014866 A1, Taiwan Supercritical Technology Co., Ltd., Fenyuan, Taiwan, ROC 2013.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b5a3275d-9ba2-4365-a603-b29a2fab1f3c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.