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Abstract 

Benefiting from the rapid development of Internet technology and communication technology, the Internet 

of Things industry has risen rapidly. With the rapid development of Internet technology, network security has 

become increasingly prominent. Moreover, intrusion attacks can cause system failures or reduce system 

performance, so intrusion detection is an important aspect of ensuring system reliability. Aiming at the great 

security risks faced by industrial Internet of Things during operation, this study proposes an industrial Internet 

of Things fault detection model based on a convolutional neural network, which initially screens the intrusion 

attacks by convolutional neural network, and introduces a particle swarm optimization algorithm to identify the 

screened intrusion attacks. The experimental results demonstrated that when the training set size was 1600, the 

accuracy rates of random forest, K-mean clustering algorithm, convolutional neural network and improved 

convolutional neural network algorithms were 93.2%, 94.9%, 96.3%, and 98.6%, respectively, and the false 

alarm rates were 6.9%, 5.0%, 3.8%, and 2.1%, respectively. The random forest, K-mean clustering, 

convolutional neural network, and improved convolutional neural network algorithms had root mean square 

error values of 0.32, 0.22, 0.18, and 0.11, respectively. The corresponding F1 values were 0.81, 0.84, 0.87, and 

0.98 when the training set size was 800. The results of the study demonstrate that the improved algorithmic 

model outperforms the other strategies, offering a solid foundation for application in the industrial Internet of 

things. 

 

Keywords: support vector machines, convolutional neural networks, intrusion detection, particle swarm optimization, 

industrial internet of things 

 
1. INTRODUCTION 

 

The networking and intelligence of production 

equipment have emerged as a significant trend in the 

industrial field, driven by the rapid development of 

industrial Internet of Things (IIoT) technologies. 

Due to the development of the Internet, the external 

situation that exists in the interconnected network is 

also subjected to a huge number of network attacks, 

moreover, the methods of attacks are endless, and the 

types of intrusions that need to be resisted are also 

more and more complicated and diverse [1]. 

Traditional intrusion detection system (IDS) has 

several shortcomings, including the need to 

manually define a large number of rules and features, 

which limits their effectiveness and reliability in 

dealing with increasingly complex and changing 

network environments, and makes the system 

ineffective in dealing with new and unknown 

intrusion techniques [2]. Meanwhile, the 

popularization of the network leads to the expansion 

of the scale and the complexity of the network 

environment further becomes higher, and these 
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problems make the accuracy of IDS and the ability 

to cope with the complexity of the environment 

particularly important. To address this issue, this 

research proposes a convolutional neural networks 

(CNN)-based IIoT fault detection model, which 

initially screens the intrusion attacks through CNNs 

and introduces the particle swarm optimization 

(PSO) algorithm to identify the screened intrusion 

attacks. It aims to provide theoretical and practical 

support to improve network security protection. The 

research contains four main parts. The first part is a 

brief description of other scholars' research topics on 

IIoT fault diagnosis. The second part is a review of 

the main methods used in this research. The model 

results that are obtained by using the approaches in 

the research and assessing the findings are presented 

in the third part. The fourth part is a summary of all 

the above studies and an outlook for future research. 

IIoT being a part of internet is also subjected to 

frequent intrusion attacks. A cognitive computing-

based IDS was proposed by Althobaiti et al. to secure 

industrial network physical systems. The method 

used a gated recursive unit model and binary 
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bacterial foraging optimization to pick features and 

identify intrusions. The study's findings 

demonstrated that the suggested model improved the 

detection rate by 98.45% on industrial network-

physical system data [3]. To increase the detection 

accuracy of IDS, Karthic and Kumar suggested a 

feature selection technique based on enhanced 

conditional random field mixed with optimized 

hybrid deep neural network for classification. The 

outcomes showed that, in comparison to existing 

machine learning algorithms, the suggested 

algorithm performed better on the NSL-KDD and 

UNSW-NB15 datasets and had higher accuracy [4]. 

To solve the security challenges in cloud computing, 

Devi and Muthusenthil suggested a collaborative, 

distributed, and data-driven intrusion detection and 

prevention system. The system was built with the 

intention of providing comprehensive ID for all 

cloud service providers by leveraging cloud 

resources. The study's findings demonstrated that the 

suggested framework could successfully raise cloud 

computing security and lower infiltration risk [5]. To 

improve network security of industrial control 

systems, Zhang et al. suggested a defense in depth 

concept-based network attack detection system. The 

study's findings demonstrated that the suggested 

detection system could successfully identify network 

intrusions and carry out the early warning role [6]. 

A local anomaly factor-based ID technique was 

presented by Ning et al. to address the issue of 

controller LAN buses without security protection 

mechanisms. Without changing the protocol or 

adding to the computational load, the technique 

made use of the physical properties of the voltage 

signals on the controller LAN bus to increase the 

detection accuracy and lower the false detection rate. 

The research results indicated that the method had 

good performance and feasibility, and was a 

powerful means to protect the security of automotive 

networks [7]. Chen et al. addressed the challenges of 

conventional machine learning-based IDS in 

preprocessing and fusion training of heterogeneous 

data. According to the study's findings, the plan 

could resolve the cold-start issue, enhance detection 

accuracy, and streamline the data normalization 

procedure [8]. A model-agent-based method was 

presented by Haffar et al. to explain the predictions 

of black box deep learning models, with the goal of 

enhancing the interpretability of artificial 

intelligence. In federated learning scenarios, the 

approach could be used to identify security and 

privacy breaches and provide an explanation of their 

origin. The study's findings showed that the 

approach can identify attacks with a high degree of 

accuracy and explain where they originated [9]. 

In summary, many scholars have already studied 

ID and achieved certain results, but no scholars have 

studied ID in IIoT. This research proposes a CNN-

based IIoT fault detection model, which initially 

screens the intrusion attacks by CNN network and 

introduces PSO algorithm to recognize the screened 

intrusion attacks. 

2. METHODS 

 

The first part analyzes the problems of IIoT and 

IDS and proposes an offline ID model based on 

CNN. The second part improves the offline ID 

model and proposes an online ID model for networks 

in real environments. 

 

2.1. Offline intrusion detection model based on 

improved CNNs 

IIoT is a type of ubiquitous network that applies 

Internet of Things (IoT) technology in the industrial 

sector. IIoT is the application of Internet and sensor 

technologies to industrial production and 

manufacturing processes in order to achieve 

intelligent, real-time and seamless connectivity 

between devices, systems and people [10]. IIoT aims 

to boost monitoring and control of industrial 

processes, lower costs, improve product quality, and 

increase productivity by integrating a range of 

sensors, devices, and data analytics. As illustrated in 

Fig. 1, the IIoT's physical-logical architecture can be 

split into three sub-layers from bottom to top. 

 

Computing

Communication 

technology

Computer 

network

Mobile 

communication 

technology

Internet

Mobile network

IIoT

Application 

layer

Communication 

Layer

Physical layer

Smart grid
Intelligent 

logistics

Mobile 

communicati

on network
Internet

Identify 

Device

Sensing 

Devices

 
Fig. 1. Structure of IIoT 

 

Fig. 1 depicts the application, communication, 

and physical layers that make up the IIoT 

architecture. The physical layer is the lowest layer in 

the IIoT architecture, which mainly involves 

hardware and transmission media, including sensors, 

actuators, IoT devices, communication cables, and 

network devices. The physical layer is responsible 

for realizing the transmission and connection of data 

and ensuring that devices can communicate with 

each other. The communication layer sits on top of 

the physical layer and is responsible for handling the 

transmission of data, communication protocols, and 

network structure. The communication layer ensures 

that IoT devices are able to exchange information 

effectively with each other. The application layer is 

the highest layer in the IIoT architecture and this 

layer focuses on processing and implementing 

specific business applications. On this application 

layer, data is transmitted from the physical and 

communication layers, interpreted and processed to 

provide meaningful information and functionality to 

the business and users [11]. Among the three 

structures, the communication layer is the most 

standardized, industrialized and mature part of the 

three layers of the IIoT, making the whole IIoT 

constitute a cooperative and perceptive network. 

Due to the development of the Internet, the external 
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situation that exists in the interconnected network 

also suffers from massive cyber attacks. The attack 

methods are endless, and the types of invasions that 

need to be resisted are also more and more 

complicated and diversified. To address this 

problem, IDS is proposed, which is a combination of 

hardware and software that can carry out ID to 

protect the user's network security. Its workflow is 

shown in Fig. 2. 

 

Data 
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Data 

processing

Data 

analysis
Response 

processing  
Fig. 2. Workflow diagram of intrusion 

detection systems 

 

In Fig. 2, relevant information is first collected 

on the network or in the system log. Then the 

collected information is preprocessed to integrate the 

data. To ascertain whether the system has been 

compromised, the data is then examined and 

contrasted with the intrusion behaviors found in the 

database. Finally if the intrusion operation is 

detected, it responds to the intrusion operation, such 

as alarm isolation and other anti-intrusion 

operations. The impact of IDS is contingent upon the 

quality and quantity of the data collected. It can be 

reasonably assumed that the more data that is 

collected, the more effective the subsequent ID will 

be. The data analysis phase is the core of the whole 

IDS, through which the trained model is ID, and the 

model's goodness directly determines the 

performance of IDS [12]. The traditional IDS is not 

able to cope with the more complex network 

environment nowadays. This research proposes an 

ID method based on CNN and support vector 

machine (SVM). Fig. 3 illustrates this method's 

structure. 
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Fig. 3. Structure of intrusion detection model 

 

In Fig. 3, the training set data is then 

preprocessed to create a hybrid model that combines 

standard SVMs, v-SVMs, and one-class SVMs. The 

trained model is then utilized for identification. The 

majority of the data in the original dataset require 

preprocessing. Equation (1) illustrates the processing 

expression. 

min

max min

x
x

−
 =

−
                         (1) 

In Equation (1), x  denotes the original data and 

x   is the processed data. max  and min  are the 

maximum and minimum value, respectively. After 

completing the data preprocessing, feature selection 

is required, which selects a subset from the 

preprocessed data without changing the 

representation of the data to be used in the modeling 

process. The most representative or pertinent 

features are typically found in the chosen subset, 

which enhances model performance, lowers 

dimensionality, lowers the chance of overfitting, and 

expedites training [13]. Pearson's correlation 

coefficient, whose expression is given in Equation 

(2), is used to downscale the data. 

(( )( )( , ) Y X

Y X Y X

E Y XCOV X Y
cor

 

   

− −
= =        (2) 

In Equation (2), X  and Y  denote two random 

features in the data set.   is the mean of the features 

in all the data and   is the standard deviation of the 

features in all the data. The reduced-dimensional 

data should be inputted into the model for training 

purposes. Subsequently, the data should be filtered 

through a CNN. CNN can automatically learn and 

extract features from data, from low-level to high-

level, reducing the complexity of manually designed 

features. By sharing parameters and using 

convolutional kernels, CNN can significantly reduce 

the number of model parameters and improve 

computational efficiency. Local connections enable 

CNNs to capture local features and gradually 

integrate them into global features, thereby ensuring 

robustness to local changes. Translation invariance 

is achieved through pooling layers, making the 

model insensitive to changes in the position of input 

data. The parallel computing capability and end-to-

end learning method of CNN have improved the 

efficiency of training and inference. Its structure is 

shown in Fig. 4. 
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Fig. 4. Structure of CNN 

 

The fundamental function of CNN is 

convolution. The convolutional layer (CL) uses a 

convolutional kernel to gradually extract local 

features from the input data. Equation (3) illustrates 

the one-dimensional convolution's output formula. 

( )cn cn cnC f X W b=  +                       (3) 

In Equation (3), cnC  is the output value. f  is the 

CL activation function and cnW  is the weights of the 

convolutional kernel. X  displays the input data and 

cnb  is the bias of the convolution kernel [14]. To 

achieve the goal of dimensionality reduction, the 

pooling layer primarily splits the generated feature 

set. Typically, this is done by using a softmax 

classifier, which can transfer the output to a 

normalized probability distribution, or output 
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confidence, whose expression is given by equation 

(4). 

( ) , 1,2,...,
i

i

z

i z

k

e
p x i k

e
= =


                (4) 

In Equation (4), k  is the classifications, ( )ip x  

is the confidence level, and iz  is the output value. 

The data is processed and output into the SVM 

model and the standard SVM expression is shown in 

Equation (5). 
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
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In Equation (5), m  is the samples and a  denotes 

the vector corresponding to the samples. When the 

vector value is greater than 0, the vector is a support 

vector. C  denotes a constant, which takes a value 

greater than 0. ( , )i jx x  denotes the kernel function. 

After CNN completes filtering the data, it is 

necessary to classify the data to distinguish whether 

it is an intrusion attack. V-SVM is an improvement 

of standard SVM, and its basic idea is to place a 

hyperplane that can separate the data and the origin 

with the maximum interval value. Firstly, v-SVM 

introduces the parameter v, which allows users to 

control the proportion of support vectors and 

misclassification rates. This provides more flexible 

model tuning capabilities, allowing users to better 

balance model complexity and misclassification rate. 

Secondly, v-SVM has strong robustness and can 

handle noisy data and outliers, reducing the risk of 

overfitting and improving the model's generalization 

ability. In addition, the introduction of the parameter 

v enables v-SVM to exhibit higher stability when 

dealing with datasets of different sizes and 

imbalances. V-SVM can automatically adjust the 

complexity of the model without manually selecting 

the value of penalty parameter C, simplifying the 

parameter tuning process of the model. Its 

expression is shown in Equation (6). 
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2

, ,
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1 1
min( )
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In Equation (6), n  is the samples and i  is the 

nonzero slack variable penalized in the objective 

function.   denotes the hyperplane.   denotes the 

maximum interval value. Then a class of SVMs is 

trained and finally the intrusion attack is detected. 

 

2.2. Online intrusion detection model based on 

PSO and CNN 

Due to the fact that most of the data in IoT is 

shared and transmitted in real time, offline intrusion 

detection based on CNN-SVM has poor performance 

for IoT. Therefore, an online intrusion detection 

model based on CNN and PSO algorithm is proposed 

to replace the SVM structure based on the CNN-

SVM model. PSO is an optimization technique that 

takes its cues from the collective behavior of living 

things, such as flocks of birds and fish schools [15]. 

The basic idea behind the method is to mimic the 

iterative movement of individual particles in the 

search space in order to identify the best possible 

answer. The PSO algorithm model's structure is 

shown in Fig. 4. 
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Fig. 5. Flowchart of PSO algorithm 

 

Using random position and velocity, a group of 

particles representing potential solutions to the 

problem are first generated in Fig. 5. Each particle is 

then evaluated in accordance with the problem's 

objective function to determine its fitness, which is 

represented by Equation (7). 

( ) (1 ) (1 )(1 )
f

t

N
F X P

N
 = − + − −             (7) 

In Equation (7),   denotes the hyperparameters 

and P  denotes the classifier performance. 
fN  

denotes the subset and tN  denotes the total features. 

Then for each particle, its individual optimal solution 

is updated, i.e., the best position reached in its 

history is recorded. The best adapted particle in the 

population is selected and its position is used as the 

optimal solution for the whole population [16]. For 

each particle, the speed and position are updated 

according to its individual optimal solution and the 

group optimal solution. Equation (8) displays the 

formula for updating it. 

2 2 1 1( 1) ( ) ( ( ) ( )) ( ( ) ( ))id id id gd id idV t v t c r x t p t c r x t p t+ = + − + + − +

(8) 

In Equation (8), 1c  represents the cognitive 

coefficient, which determines the importance of an 

individual's optimal position. 2c  represents the 

social coefficient, which determines the importance 

of the global optimal position. 1r  represents a 

random number between 0 and 1, which is used to 

introduce randomness and ensure search diversity. 

2r  represents another random number between 0 and 

1. N  denotes the total particles in the population and 

d  denotes the dimension. t  denotes the iterations, 

and   denotes the non-negative inertia factor. p  

denotes the optimal position. Fig. 5 displays the 

proposed online ID paradigm. 
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Fig. 6. Online intrusion detection model 

 

The three key components of the online ID model 

in Fig. 6 are data collecting, data preparation, and 

model construction. First, the data set is 

preprocessed; non-numerical data in the original data 

set must be converted to numerical data because the 

model requires numerical data for the input [17]. 

After the data has been feature selected, a gradient 

boosting decision tree is rapidly constructed using 

LightGBM and Pearson's correlation coefficient. 

The optimization goal of the gradient boosting 

framework is to minimize the loss function (LF). For 

the regression problem, a typical mean square error 

LF is shown in Equation (9). 

2

1

1
( ) ( ( ))

2

N

i ii
L y F x

N


=
= −              (9) 

In Equation (9), N  denotes the samples, iy  

denotes the true label, and ( )iF x  denotes the 

predicted value (PV). The core of gradient boosting 

is to update the model parameters by gradient 

descent method. For the LF, the gradient is usually 

computed as the partial derivative of the LF with 

respect to the PV of the model. For the mean square 

error LF described above, the gradient is calculated 

as shown in Equation (10). 

( )
( )

i i

i

L
F x y

F x


= −


                 (10) 

In Equation (10), ( )iF x  is the PV and iy  is the 

output value. LightGBM uses a histogram gradient 

boosting algorithm, which hinges on selecting the 

optimal node splits [18]. The gain of node splitting 

is shown in Equation (11). 
2 2 22

1
[ ]

2

l r lr

l r r l

Gain Gain GainGain
Gain

H H H H

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+
= + − −

+ + + +

(11) 

In Equation (11), Gain  denotes the gain of the 

child node, H  is the sum of the child node matrix, 

and   is the regularization term. After generating 

the gradient boosting decision tree by LightGBM, 

the global importance formula of the features is 

calculated as shown in Equation (12). 

2 2
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
 = =




                 (12) 

In Equation (12), 
2

jJ  denotes the global 

importance of the computed feature and M  denotes 

the the generated gradient spanning tree. L  denotes 

the leaf nodes and 1L−  denotes the nodes other than 

leaf nodes in the generated gradient spanning tree. 
2

ti  denotes the amount of reduction of the squared 

loss obtained after the node completes the node 

splitting of the generated gradient spanning tree. 

 

3. RESULTS 

 

In the first part, the K-mean clustering method 

(K-means) and the random forest algorithm (RF) are 

introduced. The accuracy and LF measures are 

employed in these methods to analyze the offline ID 

model's performance. The second part analyzes the 

performance of online ID network models. 

 

3.1. Offline intrusion detection model based on 

improved CNNs 

 

The server CPU used in this research is Inter(R) 

Core(TM) i5-10210U with 16GB of RAM, and the 

GPU is NVIDIA Geforce GTX2080Ti with 8GB of 

video memory. The operating system is Windows 

10. The dataset used is the UNSW-NB15 dataset, 

which simulates real-world network activity, 

including normal traffic and various attacks. The 

dataset contains normal traffic and nine different 

types of network attacks, such as fuzzers, analytics, 

backdoors, denial of service, remote access Trojans, 

worms, Shellcode, detection, and spyware. In 

addition, the dataset contains 49 features, including 

basic features (such as source IP, destination IP, 

ports, etc.), content features (such as byte count, 

packet count, etc.), and temporal features (such as 

traffic duration, etc.), as well as higher-order features 

based on statistics and information theory. The 

dataset covers various types of attacks and normal 

traffic in modern network environments, with high 

diversity and representativeness. Moreover, it 

provides rich features that facilitate in-depth 

research on different detection methods. 2000 data 

are randomly selected and divided according to the 

ratio of 4:1 between training set and validation set. 

To compare this suggested strategy with RF and K-

means, the results are displayed in Fig. 7 [19-20]. 

Figs. 7 (a), 7 (b), 7 (c), and 7 (d) respectively 

represent the accuracy, false alarm rate, RMSE 

value, and F1 value of each algorithm on different 

sizes of training sets. From Fig. 7(a), the accuracy of 

each algorithm model increases as the training 

dataset increases. At a training set size of 1600, the 

accuracy of RF, K-means, CNN, and CNN-SVM 

algorithms are 93.2%, 94.9%, 96.3%, and 98.6%, 

respectively. In Fig. 7(b), the false alarm rate of each 

algorithm model is decreasing as the training dataset 

increases. At a training set size of 1600, the 
false alarm rates of RF, K-means, CNN, and CNN-

SVM algorithms are 6.9%, 5.0%, 3.8%, and 2.1%, 

respectively. In Fig. 7(c), the RMSE values of each 

algorithm model are decreasing as the training data 

set increases. When the training set size is 800,  the 
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Fig. 7. Performance comparison of four 

algorithmic models 

RMSE values of RF, K-means, CNN, and CNN-

SVM algorithms are 0.32, 0.22, 0.18, and 0.11, 

respectively. In Fig. 7(d), as the training dataset size 

increases, the F1 value of each algorithmic model is 

increasing. When the training set size is 800, the F1 

values of RF, K-means, CNN, and CNN-SVM 

algorithms are 0.81, 0.84, 0.87, and 0.98, 

respectively. According to the experimental results, 

out of the four technique models, the suggested 

CNN-SVM algorithm performs the best and can 

attain higher performance with less training data. 

Five more common intrusion attacks in the dataset 

are selected to compare the time consumed by the 

four algorithms for ID, and the results are shown in 

Fig. 8. 
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Fig. 8. Comparison of model performance 

against different intrusion attacks 

 

Fig. 8(a) represents the recognition time of 

different algorithmic models for four different 

intrusion attack types and Fig. 8(b) represents the 

recognition accuracy of different algorithmic models 

for four different intrusion attack types. In Fig. 8(a), 

among the four intrusion types, the recognition time 

of each method is longer for Generic intrusion type, 

in which the detection time of CNN-SVM  

 algorithmic model for Normal, Generic, DoS, 

and Backdoor intrusion types are 187ms, 152ms, 

68ms, and 156ms, respectively. In Fig. 8(b), the 

algorithmic model of each recognize the Dos 

intrusion type correctly is low. Among them, the 

detection accuracy of CNN-SVM algorithm model 

for Normal, Generic,  DoS  and Backdoor  intrusion  
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types are 0.91, 0.98, 0.79 and 0.99, respectively. The 
outcomes illustrate that the proposed CNN-SVM 
algorithm is able to show good performance in 
different intrusion types. The total performance of 
each method is compared, and Table 1 shows the 
results. 

In Table 1, among the nine intrusion types, the 
individual methods have lower detection accuracy 
for DoS, Backdoor and Worms intrusion types and 
higher detection accuracy for Exploits and Shellcode 
intrusion types. Among the methods, the RF model 
has the lowest recognition accuracy, the largest 
RMSE value and the longest detection time. The 
proposed CNN-SVM algorithm model has the 
highest recognition accuracy, the smallest RMSE 
value and the shortest detection time. According to 
the testing results, out of the four algorithmic 
models, the suggested CNN-SVM algorithmic 
model performs the best and is also effective against 
various kinds of attacks. 

 
3.2. Performance analysis of online intrusion 

detection model based on PSO and CNN 
In the networking state of the verification 

model's performance, nine selected intrusion types 
are identified as more excellent and more difficult, 
with two identified for each. The identification 
performance and simulation of the model are then 
analyzed. The results are shown in Fig. 9. 

The CNN-PSO and CNN algorithm models' 
classification performance is shown in Fig. 9(a), 
while the K-means and RF models' classification 
performance is shown in Fig. 9(b). In this figure, in 
the CNN-PSO algorithm model, most of its 
simulation results show more excellent performance. 
Among the four algorithmic models, the proposed 
CNN-PSO algorithmic model shows good 
recognition performance. Fig. 10 presents the results 
of a comparison of the four approach models' overall 
performance on the validation set. 

The accuracy of each algorithm under various 
iteration counts is displayed in Fig. 10(a), and the 
accuracy of each algorithm under various validation 
sets is displayed in Fig. 10(b). As the iterations 
increases in Fig. 10(a), the performance of each 
algorithm model progressively improves. The CNN-
PSO algorithm model essentially reaches its peak 
performance when the number of iterations 
approaches  fifty.  When  the  iterations  is  250, the 
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Fig. 9. Comparison of classification 

performance of each algorithmic model 

 

accuracy of RF, K-means, CNN, and CNN-PSO 

algorithm models are 0.73, 0.81, 0.85, and 0.94, 

respectively. In Fig. 10(b), the performance of each 

model decreases as the validation set increases, and 

the accuracy of RF, K-means, CNN, and CNN-PSO 

algorithm models is 0.73 when the validation set is 

500. models have accuracies of 0.42, 0.45, 0.52, and 

0.77, respectively. The suggested algorithmic model 

performs the best out of all the models, according to 

the experimental data. To rate the models used in the 

study, fifty participants are chosen at random and 

placed into five groups. The results are displayed in 

Table 2. 
 

Table 1. Detection results of each method for different types of intrusion detection 

Type 

RF K-means CNN CNN-SVM 

ACC RMSE 
Time 

(ms) 
ACC RMSE 

Time 

(ms) 
ACC RMSE 

Time 

(ms) 
ACC RMSE 

Time 

(ms) 

Generic 76.8 40.9 286 79.4 34.8 212 85.5 19.5 131 90.7 19.5 57 

Exploits 78.1 42.2 278 80.7 36.1 204 86.8 20.8 123 92.1 20.8 49 

Fuzzers 73.6 37.7 347 76.2 31.6 273 82.3 16.3 192 87.5 16.3 118 

DoS 65.8 29.9 369 69.6 23.8 295 75.7 8.5 214 80.9 8.5 140 

Reconnaissance 76.6 40.7 297 80.4 34.6 223 86.5 19.3 142 91.7 19.3 68 

Analysis 66.8 30.9 284 70.6 24.8 206 76.7 9.5 178 81.9 9.5 125 

Backdoor 71.2 35.3 296 75.8 29.2 218 81.9 13.9 190 87.1 13.9 80 

Shellcode 78.3 42.7 271 82.1 36.6 193 88.2 21.3 165 93.4 21.3 55 

Worms 69.7 34.1 265 73.5 28.7 244 79.6 13.4 216 84.8 13.4 106 
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Fig. 10. Performance comparison of different 

algorithms 

 
Table 2. User evaluation form 

Model 
Grou

p 1 

Grou

p 2 

Grou

p 3 

Grou

p 4 

Grou

p 5 

CNN-

PSO 
91.6 92.7 88.4 89.8 89.9 

CNN 85.2 85.7 85.6 83.6 82.5 

K-

means 
82.2 80.6 81.5 84.8 79.5 

RF 76.4 78.3 79.8 77.9 76.3 

 

In Table 2, the ratings of the five groups for the 

CNN-PSO algorithm model are 91.6, 92.7, 88.4, 

89.8, and 89.9, respectively. The ratings for the CNN 

algorithm model are 85.2, 85.7, 85.6, 83.6, and 82.5, 

respectively. The ratings for the K-means algorithm 

model are 82.2, 80.6, 81.5, and 84.8, respectively, 

79.5. The ratings for the RF model are 76.4, 78.3, 

79.8, 77.9, and 76.3, respectively. The trial findings 

demonstrate how well-liked the suggested CNN-

PSO algorithm model is among consumers. 

 

4. CONCLUSION 

 

With the development of the Internet, IIoT has 

been applied to various fields. To address the 

problem that IoT is often subject to intrusion attacks, 

this research proposes a CNN-based IIoT fault 

detection model. It initially screens intrusion attacks 

by CNN network and introduces PSO algorithm to 

recognize the screened intrusion attacks. The 

outcomes demonstrated that the performance of each 

algorithmic model was enhanced with the increase of 

the training dataset, and the accuracy of the RF, K-

means, CNN, and CNN-SVM algorithms were 

93.2%, 94.9%, 96.3%, and 98.6% when the training 

set size was 1600, and the false alarm rate was 6.9%, 

5.0%, 3.8%, and 2.1%, respectively. When the size 

of the training set was 800, the RMSE values of RF, 

K-means, CNN, and CNN-SVM algorithms were 

0.32, 0.22, 0.18, and 0.11, and the F1 values were 

0.81, 0.84, 0.87, and 0.98, respectively. The CNN-

SVM algorithm model's detection times for Normal, 

Generic, DoS, and Backdoor intrusion types were 

187ms, 152ms, 68ms, and 156ms, respectively, and 

the detection accuracy were 0.91, 0.98, 0.79, and 

0.99, respectively. When the number of iterations 

reaches about 50, the performance of the CNN-PSO 

algorithm model basically reaches the maximum. 

When the number of iterations was 250, the accuracy 

of RF, K-means, CNN, and CNN-PSO algorithm 

models were 0.73, 0.81, 0.85, and 0.94, respectively. 

The outcomes demonstrate that, out of all the 

models, the suggested algorithmic model performs 

the best. Nevertheless, this research is not without 

limitations. The adopted dataset comprises a smaller 

number of attack types than would be observed in a 

real network, where a greater diversity of intrusion 

attacks is likely to occur. By expanding the range of 

attacks included in the dataset, it would be possible 

to more rigorously assess the robustness of the 

model. 
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