Powiadomienia systemowe
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A simple hydraulic model of liquid and gas flow from a collecting sump via vacuum service lateral to a vacuum main has been presented. The model was formulated and validated on experimental data and CFD simulations. The standard gas (air) to liquid (sewage) volumetric ratio is roughly equal to the ratio of subsequent admittance times of these two phases, provided that the liquid plug is not fully sucked from the service lateral to the vacuum main during the valve open time. A longer air suction time is needed only when the service lateral is too short to provide enough air to transport the sewage past the nearest downstream lift on the vacuum main. Sizing properly the active sump volume and valve open time for a given service lateral length, one can provide the required air to liquid ratios along the vacuum main, thus minimizing the energy consumption by the vacuum pumps.
Czasopismo
Rocznik
Tom
Strony
69--88
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
autor
- Poznan University of Life Sciences, Chair of Hydraulic and Sanitary Engineering, ul. Piątkowska 94A, 60-649 Poznań, Poland
autor
- Poznan University of Life Sciences, Chair of Hydraulic and Sanitary Engineering, ul. Piątkowska 94A, 60-649 Poznań, Poland
Bibliografia
- [1] LILJENDAHL S.A.J., Method of hydro-pneumatic conveying, system and apparatus, US patent No. 3, 1966, 239, 849.
- [2] SKILLMAN E.P., Design criteria for vacuum wastewater transfer systems in advanced base applications, Report N-1554, Civil Eng. Lab. NCBC, Port Hueneme 1979.
- [3] LI M.N., ZHOU J., Energy usage in VWCS applications, World Pumps, 2011, 36–37. DOI: 10.1016/S0262-1762(11)70107-9.
- [4] EN 16932:2018. Drain and sewer systems outside buildings, Part 3. Vacuum systems.
- [5] GRAY D.D., MILLER L.L., WINANT E.H., Experimental study of vacuum transport in a horizontal 50-millimeter pipe, Report DTRC/SME-CR-04-89, Department of Civil Engineering, West Virginia University, Morgantown 1989.
- [6] AIRVAC Municipal Design Manual, Aqseptence Group, Inc., Rochester 2018.
- [7] DUKLER A.E., HUBBARD M.G., A model for gas–liquid plug flow in horizontal tubes, Ind. Eng. Chem. Fund.,1975, 14 (4), 337–347. DOI: 10.1021/i160056a011.
- [8] BOZKUS Z., WIGGERT D.C., Liquid plug motion in a voided line, J. Fluids Struct., 1997, 11, 947–963. DOI: 10.1006/JFLS.1997.0112.
- [9] XU G., ZHANG G., LIU G., ULLMANN A., BRAUNER N., Trapped water displacement from low sections of oil pipelines, Int. J. of Multiph. Flow, 2011, 37, 1–11. DOI: 10.1016/j.ijmultiphaseflow.2010.09.003.
- [10] TIJSSELING A.S., HOU Q., BOZKUS Z., An improved one-dimensional model for liquid plugs traveling in pipelines, J. Pres. Ves. Tech., Trans. ASME, 2016, 138 (3), 011301. DOI: 10.1115/1.4029794.
- [11] BURNS B.C., ALBERTSEN H.C., Method and apparatus for conveying sewage, US patent No. 3, 1973, 730, 884.
- [12] TAY B.L., THORPE R.B., Hydrodynamic forces acting on pipe bends in gas–liquid slug flow, Chem. Eng. Res. Des., 2014, 92, 812–825. DOI: 10.1016/j.cherd.2013.08.012.
- [13] BEGGS D.H., BRILL J.P., Two-phase flow in pipes, Tulsa University Press, Tulsa 1991.
- [14] ANSYS Fluent, User’s Guide, Release R2, 2020.
- [15] Watercare, Vacuum Wastewater Systems Standard, Auckland 2018.
- [16] Roediger Vacuum, Vacuum Sewer Systems Construction Manual, Bilfinger-Berger, Hanau 2012.
- [17] KALENIK M., Experimental investigations of interface valve flow capacity in the RoeVac-type vacuum sewage system, Env. Prot. Eng., 2014, 40 (3), 127–138. DOI: 10.5277/epe140310.
- [18] EBLEN J.E., CLARK L.K., Pressure and vacuum sewer demonstration project bend, Oregon, EPA, Cincinnati 1978.
- [19] DUAN J., ZHOU J., Studies on frictional pressure drop of gas-non-Newtonian fluid two-phase flow in the vacuum sewers, Civil Eng. Environ. Syst., 2006, 23 (1), 1–10. DOI: 10.1080/10286600500431904.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b5a15c65-efc7-4cbb-8375-c99f6483a759