PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Perspective on basic architectures and properties of unconventional and Field Induced Josephson junction devices

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We present the concept of unconventional and Field Induced Josephson junction (uJJ and FIJJ) and devices built from them. They can be made by placement of ferromagnetic strip on top of a superconducting strip. In such case modulation of superconducting order parameter and magnetization is obtained. Furthermore we can build tunable Josephson junction arrays, which can be tuned by applying external magnetic field to some circuit element(s). We present the superconducting order parameter distributions obtained from extended Ginzburg-Landau functional, which includes the coexistence of superconducting order parameter and magnetization. We present the case of SQUID built in uJJ and FIJJ architecture and current limiter.
Twórcy
autor
  • Jagiellonian University, Department of Physics, Astronomy and Applied Computer Science, ul. Reymonta 4, 30-059 Cracow, Poland
  • University of Warsaw, Faculty of Physics, ul. Hoza 69, 00-681 Warsaw, Poland
autor
  • University of Warsaw, Faculty of Physics, ul. Hoza 69, 00-681 Warsaw, Poland
  • The Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, 351-0198 Saitama, Japan
Bibliografia
  • [1] K. Pomorski, P. Prokopow, ”Towards the determination of properties of field induced Josephson junction made by putting ferromagnetic strip on the top of superconducting strip”, Electronic Journal of Theoretical Physics 7 No. 23 (2010)
  • [2] K. Kuboki, ”Microscopic derivation of the Ginzburg-Landau equations for coexistent states of superconductivity and magnetism”, arXiv:1102.3329 (2011)
  • [3] K. Pomorski, ”Possib1e existence of field induced Josephson junction”, Physica Status Solidi B (2012)
  • [4] A. Maeda, L. Gomez, ”Experimental Studies to Realize Josephson Junctions and Qubits in Cuprate and Fe-based Superconductors”, Journal of Superconductivity and Novel Magnetism 23, (2010)
  • [5] K. Pomorski, P. Prokopow, ”Numerical solutions of time-dependent Ginzburg-Landau equations for various superconducting structures”, Recherches sur les d’eformations (2012)
  • [6] K.K. Likharev, ”Superconducting weak links”, Review of Modern Physics 51, (1979)
  • [7] T. Clinton, ”Advances in the development of the magnetoquenched superconducting valve: Integrated control lines and a Nb-based device”, Journal of Applied Physics 91 (2002)
  • [8] B.D. Josephson,”Possible new effects in superconductive tunnelling”, Physics Letters 1 (1962)
  • [9] J.S. Reymond, P. SanGiorgio, ”Tunneling density of states as a function of thickness in superconductor/strong ferromagnet bilayers”, Physical Review B 73 (2006)
  • [10] X.B. Xu, H. Fanohr, ”Vortex dynamics for low-k type superconductors”, Physical Review B 84 (2011)
  • [11] K. Pomorski, P. Prokopow, ”Numerical solutions of nearly time- dependent Ginzburg-Landau equations for various superconducting structures”, Recherches sur les d’eformations, (2011)
  • [12] M. Thinkham, ”Introduction to superconductivity”, Dover Publications (2004)
  • [13] J.Q. You, F. Nori, ”Superconducting Circuits and Quantum Information”, Physics today (2005)
  • [14] N. Cassol-Seewald, G. Krein, ”Numerical simulation of Ginzburg-Landau-Langevin equations”, Brazilian Journal of Physics 37 (2007)
  • [15] J.J.V. Alvarez, C.A. Balseiro, ”Vortex structure in d-wave superconductors”, Physical Review B 58 (1998)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b59d169b-5cd2-4a31-9b48-7ad9665366c8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.