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Abstract  
 

The main aim of the paper is to translate reliability problems to the knapsack optimization problem. The review 
of the known methods of multi-criteria optimization is done. Particularly, the SPEA algorithm is presented. 
Furthermore, the 0-1 knapsack problem solution by SPEA algorithm is introduced and used to the reliability 
optimization of exemplary parallel-series system. 
 
1. Introduction  
 

The problem of finding optimal solutions is met in 
many areas of modern science, technology and 
economics. Civil engineer optimizes the structure of 
the building and construction material parameters in 
order to obtain the structure safe and cheap. The 
navigator must optimize the route of the ship due to 
safety, time of passage, fuel and cost [6], [9]. The 
researcher is looking for a mathematical function that 
best approximates the data collected during the 
experiment. Each of these problems can be 
(generally) formulated strictly as an optimization 
problem, if only we can specify three elements: a 
model of the phenomenon of distinguished decision 
variables, objective function - also known as a 
quality criterion - and limitations. 
The same applies to reliability, safety and risk 
analysis. The current complexity of the technical 
systems [2] makes important more and more criteria 
for their safe and reliable operations [4]. This implies 
that more than one object is taken into account for 
solving the optimization problems ([6], [8]-[12]).  
Some tools for solving the problems of complex 
technical systems operation, reliability, availability, 
safety and cost optimization are presented in [3]-[5].  
The methods of the reliability prediction and 
optimization of complex technical systems related to 
their operation processes are introduced in [5]. 
In [6] is done the review of the known deterministic 
optimization methods for engineering and 
management. Some nondeterministic methods are 
introduced in [7]. The optimization methods for 

maritime transportation problems, i.e. weather 
routing or minimizing fuel consumption are 
introduced in [6], [9], respectively. The general 
methods of the optimization are shown in [10]-[12]. 
The paper shows possibility application of the 
knapsack problem [7], [12] to multi-criteria 
optimization of reliability problems. 
 
2. Review of multi-criteria optimization 
methods 
 

Generally, the single-objected optimization problem 
is defined as follows (minimizing or maximizing 
problem): 
   
   min)( →ixF or max,)( →ixF  

   njixxlxl iijij ,...,2,1, ,0 ,0)( ,0)( =≥≤≤            (1) 

 
where 

ix - decision variables, ni ,...,2,1= ; 

)( ixF  - goal function; 

)( ij xl - limits function (low or high) for decision 

variables, nji ,...,2,1, = . 
 
In contrast, the multi-objective (multi-criteria) 
optimization model can be described as a vector 
function f  that maps a tuple of m  decision 
variables to a tuple of n  objectives. The formal 
notation is as follows [12]: 
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   ( ) maxmin/)(,),(),()( 21 →== xfxfxfxfy nK  (2) 
 
subject to ( ) ,,,, 21 Xxxxx m ∈= K  

    ( ) ,,,, 21 Yyyyy n ∈= K  
 
where  
x - decision variable,  
X  - parameter (variable) space. 
y  - objective vector, 
Y - objective space. 
 
The set of multi-objective optimization problem 
solutions consists of all decision vectors for which 
the corresponding objective vectors cannot be 
improved in any dimension without degradation in 
another. These vectors are known as Pareto optimal, 
what is related to the concept of domination vector 
by vector. It is simple to explain after introduce 
following definitions. 
 
Definition 1. Let us take into account a maximization 
problem and consider two decision vectors ,, X∈ba  
then a  is said to dominate b  if and only if  
 
   )()( :},...,2,1{ ba ii ffni ≥∈∀  
   ∧       (3) 

   
).()( :},...,2,1{ ba jj ffnj ≥∈∃

 
 
Definition 2. All decision vectors which are not 
dominated by another decision vector are called non-
dominated. 
 
When the decision vectors are non-dominated within 
the entire search space, they are denoted as Pareto 
optimal (Pareto-optimal front). 
 
These general formulations for single and multi-
objective optimization problem are common for 
different types of engineering problems, which can 
be related to different optimization problems 
presented on Figure 1. 
 

 
 

Figure 1. Different types of problem related to 
optimization problems [8]. 
 

The basic classification of the optimization methods 
consists in their division due to the number of criteria 
(one or multi-criteria). As it is shown on Figure 2, 
there is possibility to distinguish seven most 
frequently used methods of multi-criteria 
optimization and three for one-criterion.  
 

OPTIMIZATION

METHODS

ONE CRITERION MULTI-CRITERIA

- LINEAR PROGRAMMING;

- NONLINEAR PROGRAMMING

- DYNAMIC PROGRAMMING;

- WEIGHTED OBJECTIVE METHODS

- HIERARCHICAL OPTIMIZATION METHOD

- TRADE-OFF METHOD

- GLOBAL CRITERION METHOD

- METHOD OF DISTANCE FUNCTIONS

- MIN-MAX METHODS

- GOAL PROGRAMMING METHOD

 
 

Figure 2. Chosen optimization methods. 
 
These methods represent some general approaches 
for optimization, i.e.: 

- deterministic, 
- non-deterministic, 
- heuristic, 
- evolutionary/genetic. 

 
The above approaches can provide general tools for 
solving optimization problems to obtain a global or 
an approximately global optimum. In second case the 
best way is using the evolutionary or genetic 
algorithms. The schema of basic genetic algorithm is 
presented on Figure 3. 
General operation of genetic or evolutionary 
algorithms is based on the following steps (see 
Figure 3):  

1. Initialization. 
2. Calculate fitness. 
3. Selection/Recombination/Mutations (parents 

and children). 
4. Finished. 

 

 
 

Figure 3. Basic genetic algorithm [11]. 
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The each chromosome of the genetic or evolutionary 
algorithm is represented as a string of bits. 
In the paper the Strength Pareto Evolutionary 
Algorithm (SPEA) is considered [12].  
The basic notations for above algorithm are as 
follows: 
 t - number of generation, 

tP  - population in generation t, 

tP  - external set in generation t, 

P ′  - temporary external set, 
P′  - temporary population.  
 
Additionally, it is necessary to give following input 
parameters: 
N - population size, 
N - maximum size of external set, 
T - maximum number of generations, 

cp - crossing probability, 

mp - mutation probability, 

A- set of non-dominated solutions. 
 
The Strength Pareto Evolutionary Algorithm is as 
follows [12]: 
Step 1. Initialization: 
The initial population 0P  is generated according to 
procedure: 

a) To get item i. 
b) To add item i to set 0P .  

Next, the empty external set 0P  is generated, where 
t=0. 
 
Step 2. The complement of the external set is done. 
 Let P′ = tP  

a) To copy non-dominated items from 

population tP  to populationP′ . 

b) To remove dominated items from setP′ . 

c) To reduce the cardinality of the set P′  to 
value N , using clustering and the solution 

give into 1+tP . 

 
Step 3. Determination fit function. 
The value of the fit function F for items from sets tP  

i tP  can be found according to following procedure: 
The real value )1,0[∈S  is assigned for every item 

tPi ∈  (called power). This value is proportional to 

number of items tPj ∈ , which represents the 
solutions dominated by item i. 
The adaptation of item j is calculated as sum of all 
items from external set, represents solution 
dominated by item j, increased by 1. 

The aim of addition 1 is to ensure that items tPi ∈  
will have better value of fit function than items from 
set tP , i.e.  
 

  ,
1

)(
+

=
N

n
iS      (4) 

 
where: 

)(iS  - power of item i, 
n - number of items in population dominated by item 
i.  
 
It is assumed that value of fit function for item i is 
equal to his power, i.e. 
 
  )()( iSiF = .     (5) 
 
Step 4. Selection 
Let P′  = Ø. 
For i = 1,2,… k do 

a) To choose randomly two items tt PPji ∪∈, . 

b) If )()( jFiF <  then }{ iPP ∪′=′  

else }{ jPP ∪′=′ , under assumption that 
value of fit is minimizing. 

 
Step 4. Recombination. 
Let P ′′ =Ø. 
For i = 1,2,…N/2 do: 

a) To choose two items Pji ′∈,  and to remove 

it from P′ . 
b) To create items: lk,  by crossing the 

items ji, . 

c) To add items lk,  to set P ′′  with 

probability cp , else add items  ji,  to setP ′′ . 
 
Step 5. Mutation 
Let P ′′′ =Ø. 
For every item Pi ′′∈ do: 

a) To create item j by mutation the item i with 

probability mp . 

b) To add item j to setP ′′′ . 
 
Step 6. Finished 
Let PPt

′′′=+1  and 1+= tt . 

If Tt ≥  then return A – non-dominated solution 
from population tP  and finish else back to Step 2. 
 
3. The knapsack problem 
 

This problem has been studied since 1897. It is 
combinatorial optimization problem. General 
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description is based on given a set of items, each 
with a mass and a value. There is determined the 
number of each item to include in a collection so that 
the total weight is less than or equal to a given limit 
and the total value is as large as possible (according 
to (1)). The knapsack problem is a subset of NP-hard 
problems. It means that there is non-polynomial 
algorithm to solve this problem. Therefore, the 
knapsack problem has been modified many times. 
i.e. to form of the 0-1 knapsack problem. This 
modification allows for formulation of knapsack 
problem as multi-objective optimization problem. 

Generally, a 0-1 knapsack problem consists of a set 
of items, weight and profit associated with each 
item, and an upper bound for the capacity of the 
knapsack. The main goal is to find a subset of 
items which maximizes the profits and all selected 
items fit into the knapsack, i.e., the total weight does 
not exceed the given capacity [6]. 
This single-objective problem can be extended 
directly to the multi-objective case by allowing an 
arbitrary number of knapsacks. Formally, the multi-
objective 0-1 knapsack problem can be defined in 
the following way [12]:  
Given a set of m  items and a set of n  knapsacks, 
with 

=jip ,  profit of item j  according to knapsack i , 

=jiw ,  weight of item j  according to knapsack i , 

=ic  capacity of knapsack i , 

find a vector ( ) { } ,1,0,,, 21

m

mxxx ∈= Kx  such that 
 

   ∑ ≤⋅∈∀
=

m

1j
ji,w ij cxni :},...,2,1{     (6) 

 
and for which ( ))(,),(),()( 21 xxxx nffff K=  is 
maximum, where  
 

   ∑ ⋅=
=

m

1j
ji,px ji xf )(       (7) 

 
and 1=jx  if and only if when item j  is chosen. 

 
The solutions of knapsack problem can be described 
in terms of a genetic or evolutionary methods.  
 
4. Reliability of the two-state parallel-series 
system 
 

In the case of two-state reliability analysis of 
parallel-series systems we assume that ([2]):  
− n is the number of  system components, 
− ,ijE  ,,...,2,1 nki = ,,...,2,1 ilj =  are components of 

a system,  

− ijT  are independent random variables representing 

the lifetimes of components ,ijE  

,,...,2,1 nki = ,,...,2,1 ilj =  

− ),,0 ),()( ∞∈<>= ttTPtR ijij  is a reliability 

function of a component ,ijE  

,,...,2,1 nki = ,,...,2,1 ilj =  

− ),,0 ),()(1)( ∞∈<≤=−= ttTPtRtF ijijij  is the 

distribution function of the component ijE  

lifetime ijT , ,,...,2,1 nki = ,,...,2,1 ilj =  also called 

an unreliability function of a component ,ijE  

,,...,2,1 nki = .,...,2,1 ilj =  

 
Moreover, we assume that components ,1iE  ,2iE …, 

,
iilE  ,,...,2,1 nki = create a parallel subsystem ,iS  

,,...,2,1 nki = and that these subsystems create a series 
system. 
 
Definition 3. A two-state system is called parallel-
series if its lifetime T is given by    

 
   T = }.max{min

11 ij
ljki

T
in ≤≤≤≤

 

 

According to above definition, the reliability 
function of the two-state parallel-series system is 
given by  
 

   ).,()(1)(
1 1

,...,1, ∞−∞∈∏ 




 ∏−=
= =

ttFtR
nk

i

il

j
ijjnkllnk  ,    (8) 

 
5. Multi-criteria methods for reliability 
optimization problems 
 

We assume that the two-state parallel-series system 
with three main units iS  is given ( 3,2,1=i ). Every 
unit is the parallel subsystem consists of maximum 
three components which can be chosen to provide 
redundancy (see Figure 4). 
 

 
 

Figure 4. Exemplary scheme of a parallel-series 
system  
Every component of the system can have two states, 
functioning with the nominal capacity or total failure, 
corresponding to capacity 0.  The main 

E11 

E21 

E31 

E12 
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characteristics of these components are lifetime, 
nominal capacity, cost and weight. Without loss of 
generality, component capacities can be measured as 
a percentage of the maximum demand.  
The main problem is how to design a system with 
long lifetime.  
 
Under above conditions and according to the Section 
3, we assume, that  
- ic  - the time to failure of designed system; 

- jip ,  - the profit (lifetime) of using the particular 

component;  
- jiw ,  - weight of the component in  subsystem  

with cost of its installation.  
 
The best way to represent the multi-criteria 
optimization problem is binary coding. Let us 
assume that a chromosome represents the reliability 
of whole system (see Figure 5). In this chromosome 
the gen equal to 1 means that given component is 
inserted to knapsack. On the other hand, the gen in 
this chromosome is equal to 0 means that this 
component is not inserted to knapsack. The length of 
a chromosome is the number of the components, 
which are under investigation (number of system 
components, see Figure 5). 
 

 
 

Figure 5. Exemplary chromosome coding of system 
components. 
 
The characteristics of the system components 
available on market are given in Table 1. 
 
The goal of the problem is maximize reliability of 
the system, while the cost and weight are minimal. 
The execution of algorithm described in Section 2 
step-by-step, taken into account the expressions (3) – 
(7) and information given in Table 1, allows us to 
find the optimal solution for considered reliability 
optimization problem (in sense Pareto-optimal). The 
one of the possible solutions can be given as the 
above chromosome (see Figure 6): 
 

 
 

Figure 6. The resulting chromosome code 
 
 
 

Table 1. Characteristics of the system components 
 

Subsystem 
Component 

type 
Lifetime 

[h] 

Feeding 
capacity 

[%] 

Cost 
[USD] 

Weight 
[g] 

1 9950 120 99.0 34.4 
2 9840 100 59.0 24.2 
3 9450 85 37.0 28.6 

1 

4 9200 33 22.5 22.5 
1 9800 100 18.5 25.4 
2 9740 73 16.9 23.6 2 
3 9500 25 13.9 24.6 
1 9960 128 189.0 29.7 
2 9980 97 91.0 33.6 
3 9760 74 83.3 31.4 
4 9820 55 79.6 30.5 

3 

5 9710 36 76.7 32.7 
 
This chromosome represents the system composed of 
four components, given on Figure 7. 
 

 
 

Figure 7. The system designed according to results 
of optimization 
 
According to information from Section 4, the 
numerical characteristics of resulting system are as 
follows: 
 
   ],[9740}9980,9740,9840{min hT ==  

   Cost = ],[9.178 USD Weight= ].[9.103 g  
 
6. Conclusion 
 

The review and classifications of the well-known 
multi-criteria optimization methods have been done. 
The SPEA algorithm has been described step-by-step 
and the knapsack problem with its binary 
modification has been presented. It has also been 
used the SPEA algorithm to solve the 0-1 knapsack 
problem. Finally, application of methods for multi-
criteria optimization for reliability problem has been  
done. 
The methods and algorithms presented in the paper 
can be applied to the safety and risk analysis. 
The example, from Section 5, is only showing 
potential applications of methods and algorithms, 
which are described in the article.  
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