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Abstract

The main aim of the paper is to translate religbproblems to the knapsack optimization probleime Teview
of the known methods of multi-criteria optimizaties done. Particularly, the SPEA algorithm is prted.
Furthermore, the 0-1 knapsack problem solution BE/ algorithm is introduced and used to the rdligbi
optimization of exemplary parallel-series system.

1. Introduction maritime transportation problems, i.e. weather

o , , _ . routing or minimizing fuel consumption are
The problem of finding optimal solutions is met in ;.o qiced in [6], [9], respectively. The general

many areas of modern science, technology andneihods of the optimization are shown in [10]-[12].
economics. Civil engineer optimizes the structure 0 The paper shows possibility application of the
the building and construction material parametars i knapsack problem [7], [12] to multi-criteria

ordgr to obtain thg structure safe and ch'eap. Th%ptimization of reliability problems.
navigator must optimize the route of the ship due t
safety, time of passage, fuel and cost [6], [9]e Th
researcher is looking for a mathematical functioat t
best approximates the data collected during th
experiment. Each of these problems can beGenerally, the single-objected optimization problem
(generally) formulated strictly as an optimization is defined as follows (minimizing or maximizing
problem, if only we can specify three elements: aproblem):

model of the phenomenon of distinguished decision

variables, objective function - also known as a F(x) — minor F(x) — max,

quality criterion - and limitations. .

The same applies to reliability, safety and risk 100 =01;(x)<0,x 20, ] =12,...n (1)
analysis. The current complexity of the technical

systems [2] makes important more and more criterigvhere

for their safe and reliable operations [4]. Thipiims X - decision variables,=12,...,n;

that more than one object is taken into account forF(Xi) - goal function;

solving the optimization problems ([6], [8]-[12]).
Some tools for solving the problems of complex . o
technical systems operation, reliability, availapil variables,i, j =12,...,n.

safety and cost optimization are presented in$8]-[

The methods of the reliability prediction and In contrast, the multi-objective (multi-criteria)
optimization of complex technical systems related t optimization model can be described as a vector
their operation processes are introduced in [5]. function f that maps a tuple ofm decision

In [6] is done the review of the known determiruisti variables to a tuple ofn objectives. The formal
optimization =~ methods for engineering and notation is as follows [12]:

management. Some nondeterministic methods are

introduced in [7]. The optimization methods for

2. Review of multi-criteria optimization
énethods

I, (x)- limits function (low or high) for decision
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y=f(x)=(f,(x), f,(x),..., f,(x)) - min/max (2)  The basic classification of the optimization method

consists in their division due to the number ofecia

(one or multi-criteria). As it is shown odrigure 2

there is possibility to distinguish seven most

Y=y, ¥2)0Y, frequently used methods of multi-criteria
optimization and three for one-criterion.

subject tox =(x,, X,.,..., X, )0 X,

where
x - decision variable, —
X - parameter (variable) space. METHODS

y - objective vector,

Y- objective space. ONE CRITERION MULTI-CRITERIA

The set of multi-objective optimization problem

solutions consists of all decision vectors for whic | .z erosravmne: - WEIGHTED OBUEGTIVE METHODS
the corresponding objective vectors cannot b JunEA FroCkAIG HERARCHOAL OFTIZATION HETHOD
improved in any dimensiowithout degradation in - GLOBAL CRITERION METHOD s
another. These vectors are knoasPareto optimal, JMINMAXMETHODS
what is related to the concept of domination vector

by vector. It is simple to explain after introduce Figure 2 Chosen optimization methods.
following definitions.
These methods represent some general approaches
for optimization, i.e.:
- deterministic,

Definition 1.Let us take into account a maximization
problem and consider two decision vectard ] X ,

thena is said to dominat® if and only if - non-deterministic,
_ - heuristic,
0i0{12,...,n}: f,(a) = f,(b) - evolutionary/genetic.
L (3)
0O0{L2,...,n}: f (@)= f,(b). The above approaches can provide general tools for

solving optimization problems to obtain a global or
an approximately global optimum. In second case the
best way is using the evolutionary or genetic
algorithms. The schema of basic genetic algorithm i
presented ofigure 3

When the decision vectors are non-dominated WithinGene.ral operatlon of genetic or evolutionary
orithms is based on the following steps (see

the entire search space, they are denoted as Pareﬁlﬁg

optimal (Pareto-optimal front). gulr € ?m tialization

2. Calculate fitness.
3. Selection/Recombination/Mutations (parents
and children).

Definition 2. All decision vectors which are not
dominated by another decision vector are called non
dominated.

These general formulations for single and multi-
objective optimization problem are common for
different types of engineering problems, which can

. N 4. Finished.
be related to different optimization problems
resented ofigure 1
P 9 Population Rank Children
ptimization
b | oo (1] > BEEE e o]
Convex Nonconvex
- BEEEEE ®/0]/®] 4 4 4]
Linear MNonlinear Diserete Continuous
: |
LP Convex Linear Nonlinear Nonconvex
NLP | NLP
i Nonconves Convex
S mlﬂ-fmm w]afmm o Create Initi Calculate Select Create
o — L.m;m Population Fitness Parents Children
MINLP MINLP
A |
Figure 1 Different types of problem related to
optimization problems [8]. Figure 3.Basic genetic algorithm [11].
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The each chromosome of the genetic or evolutionaryThe aim of addition 1 is to ensure that itehﬁﬁ

algorithm is represented as a string of bits.

In the paper the Strength Pareto Evolutionary

Algorithm (SPEA) is considered [12].

The basic notations for above algorithm are as
follows:

t - number of generation,

P - population in generation t,

P - external set in generation t,

P’ - temporary external set,
P’ - temporary population.

Additionally, it is necessary to give following inp
parameters:

N - population size,

N - maximum size of external set,

T - maximum number of generations,

P.- crossing probability,

P.,- mutation probability,
A- set of non-dominated solutions.

The Strength Pareto Evolutionary Algorithm is as
follows [12]:
Step 1 Initialization:
The initial populationP, is generated according to
procedure:

a) To getitem.

b) To add item to set, .
Next, the empty external s& is generated, where
t=0.

Step 2 The complement of the external set is done.
Let P'=P,
a) To copy nhon-dominated
populationP, to populatiorP" .

items from

b) To remove dominated items from §&t.

c) To reduce the cardinality of the st to
value N, using clustering and the solution

give into P,,.

Step 3 Determination fit function.
The value of the fit function F for items from sd®s

I P can be found according to following procedure:
The real valueSO [0Q)is assigned for every item
iOP (called power). This value is proportional to
number of itemgOPR,, which represents the

solutions dominated by item

The adaptation of iteis calculated as sum of all
items from external set, represents
dominated by iten, increased by 1.
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will have better value of fit function than item®in
setR , i.e.

n

SO=N+1

(4)

where:

S(i) - power of item,

n - number of items in population dominated by item
I

It is assumed that value of fit function for itemns
equal to his power, i.e.

F(i)=S(). (5)

Step 4 Selection
Let P = @.
Fori=1,2,... kdo

a) To choose randomly two itenisj P OP .

b) If F@i)<F()) then P =P O{i}
elseP'=P'[0{j}, under assumption that
value of fit is minimizing.

Step 4 Recombination
Let P"=@.
Fori=1,2,...N/2 do:
a) To choose two items, j[1P" and to remove

it fromP’ .

b) To create items:k,| by crossing the
itemsi, | .

c) To add items k,| to set P" with

probability P, , else add itemd, | to setP”.

Step 5 Mutation
Let P"=@.
For every item [J P" do:
a) To create item) by mutation the item with
probability P,.
b) To add itenj to setP”.

Step 6 Finished

Let P,,=P" andt=t+1.
If t=T then return A — non-dominated solution

from populationP, and finish else back tstep 2

3. Theknapsack problem

This problem has been studied since 1897. It is
optimization problem. General
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description is based on given a set of items, each

with a mass and a value. There is determined the

number of each item to include in a collection fsat t
the total weight is less than or equal to a givenit|
and the total value is as large as possible (aouprd
to (1)). The knapsack problem is a subset of N-har
problems. It means that there is non-polynomial
algorithm to solve this problem. Therefore, the

knapsack problem has been modified many times._

i.e. to form of the 0-1 knapsack problem. This
modification allows for formulation of knapsack
problem as multi-objective optimization problem.

Generally, a 0-1 knapsack problem consists of a set

of items,weight and profit associated with each
item, and an uppdsound for the capacity of the
knapsack. The main goal is to fira subset of
items which maximizes the profits and all selected
items fit into the knapsack, i.e., thaal weight does
not exceed the given capacity [6].

This single-objective problem can be extended
directly tothe multi-objective case by allowing an
arbitrary number oknapsacks. Formally, the multi-
objective 0-1 knapsack problenan be defined in
the following way [12]:

Given a sebf m items and a set afi knapsacks,
with
pi,j
Wi

= profit of item j according to knapsadk,
= weight of item j according to knapsadk,
¢, = capacity of knapsack,

find a vectorx = (x,, X,,...,x,, )0{04}", such that
0i O{12,...,n} :ngj X <c (6)
and for which f(x)=(f,(x), f,(X),..., f,(x))
maximum, where
() =3P, X )

and x; = 1if and only if when itemj is chosen.

The solutions of knapsack problem can be described

in terms of a genetic or evolutionary methods.

4. Reliability of the two-state parallel-series
system

In the case of two-state reliability analysis of
parallel-series systems we assume that ([2]):
nis the number of system components,

E,, i=12..k, j=12..], are components of

a system,
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T, are independent random variables representing
the lifetimes of components E, ,
i=12,...k, j=12,...],

- R@t) =P, >1),t0<0,x), is a reliability
function of a component E,
i=12,...k, j=12,..,

F () =1-R () =P(T, <t),t0<0,»), is the
distribution function of the componentE,
lifetime T, i=12,...k, j=12,...l;, also called
an unreliability function of a componenk;
i=12,..k, j=12,..].

Moreover, we assume that componegkfs E,, ...
E"i, 1=12,...k,,create a parallel subsyster§
i =12,...k,,and that these subsystems create a series
system.

Definition 3. A two-state system is called parallel-
series if its lifetimeT is given by

T= min{rmaxT, )
According to above definition, the reliability

function of the two-state parallel-series system is
given by

Rusi 0= 1-[F O t0Co2). @©

5. Multi-criteria methods for reliability
optimization problems

We assume that the two-state parallel-series system
with three main unitsS is given (= 123. Every

unit is the parallel subsystem consists of maximum

three components which can be chosen to provide
redundancy (sekEigure 4).

Ell

E31
E12 E21

E32
E13

Figure 4.Exemplary scheme of a parallel-series
system

Every component of the system can have two states,
functioning with the nominal capacity or total fait,
corresponding to capacity O. The main
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characteristics of these components are lifetime,Table 1.Characteristics of the system components
nominal capacity, cost and weight. Without loss of
generality, component capacities can be measured
a percentage of the maximum demand.

The main problem is how to design a system wit

Feed'F‘E Cost |Weight
capacity

type (N "oy |USD] [d]

%SubsysternCOmpOnenLlfetlme

| lifeti 1 9950 120 99.0 344
ong liteume. 1 2 9840 | 100 | 59.0 24.]
.. . . 3 9450 85 37.0 28.4
Under above conditions and according to the Sectiop 4 9200 33 | 225 224
3, we assume, that 1 9800 | 100 | 18.§ 25.4
- G -the time to failure of designed system; 2 2 9740 73 16.9d 23.4
- p,, - the profit (lifetime) of using the particular 3 9500 | 25 | 139 244
. 1 9960 128 | 189.0 29.7
Compone_”t’ht i . vt 2 9980 | 97 | 91.0 33.4
- W, - weight of the component in subsystem 3 3 9760 74 | 833 314
with cost of its installation. 4 9820 55 | 79.6 30.5
5 9710 36 | 76.7 32.7

The best way to represent the multi-criteria

optimization problem is binary coding. Let US Thjs chromosome represents the system composed of
assume that a chromosome represents the reliabiliti,r components, given dfigure 7.

of whole system (seEigure 5. In this chromosome

f[he gen equal to 1 means that given component !s Component

inserted to knapsack. On the other hand, the gen in 2

this chromosome is equal to 0 means that this | Component| __|Component
component is not inserted to knapsack. The lenfjth o 2 2

a chromosome is the number of the components, || Component

which are under investigation (number of system 4

components, segure 9. Figure 7. The system designed according to results

SUBSYSTEM1 SUBSYSTEM2  SUBSYSTEM 3 of optimization
ololriofoi1iololol1iolo According to information from Section 4, the
! numerical characteristics of resulting system ae a
follows:

Component Component Component
type 3 type 2 type 3

Figure 5.Exemplary chromosome coding of system T =min{9840974Q998¢ =974Qh],
components. Cost= 1789[USD], Weight=1039[g].

The characteristics of the system component

S .
available on market are givenTable 1 6. Conclusion

The review and classifications of the well-known
The goal of the problem is maximize reliability of multi-criteria optimization methods have been done.
the system, while the cost and weight are minimal.  The SPEA algorithm has been described step-by-step
The execution of algorithm described in Section 2and the knapsack problem with its binary
step-by-step, taken into account the expressions (3 modification has been presented. It has also been
(7) and information given ifTable 1 allows us to  ysed the SPEA algorithm to solve the 0-1 knapsack
find the optimal solution for considered r8|lat}1llt pr0b|em_ Fina”y, app”cation of methods for multi-

optimization problem (in sense Pareto-optimal). Thecriteria optimization for reliability problem hagén
one of the possible solutions can be given as thggne.

above chromosome (s€egure 6): The methods and algorithms presented in the paper
can be applied to the safety and risk analysis.
Ol1101110(1]101011101010 The example, from Section 5, is only showing
potential applications of methods and algorithms,
Figure 6.The resulting chromosome code which are described in the article.
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