PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Based on fiber sensor network rail transit IoT monitoring system

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the process of train operation, the status information directly reflects the degree of safety of the operation. Online health monitoring and completion of train status assessment are important signs of train intelligent control. To obtain the stress field distribution of the support position (bearing area) of the train, proposed a EMU health monitoring and intelligent state assessment system based on fiber sensing internet of things (FS-IoT). The system adopts the method of combining multiple sensitized FBG sensors into a sensing network to obtain the stress field distribution at the measured location. When the train is faulty or the external environment affects the train’s operation, the stress field and vibration field on the train’s motion components will change significantly. Obtain real-time physical field information of sensitive locations through the FBG sensor array, which can realize online monitoring of train status. A distributed combinatorial optimization algorithm based on FS-IoT was designed, and the weight distribution of FBG test data at different locations on the inversion results was analyzed based on data mining. In the sensitization FBG testing experiment, under the same stress conditions, the sensitivity increased from 12.440 to49.935 pm/kN, and had good linearity. In dynamic testing, when the test carriage passes through the rail connection, there will be significant fluctuations in the center wavelength of the FBG, with a maximum wavelength offset of 2530.2 pm. The peak-to-peak values of the two test data are basically the same, indicating that stress changes can be inverted by the peak position. Finally, a trainstate inversion model based on FBG sensing network and a system framework for intelligent state evaluation are presented, providing new design ideas for train state monitoring.
Czasopismo
Rocznik
Strony
5--17
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
autor
  • Department of Computer Science and Engineering, Cangzhou Normal University, Cangzhou, 061600, Hebei, China
autor
  • Department of Computer Science and Engineering, Cangzhou Normal University, Cangzhou, 061600, Hebei, China
autor
  • China Helicopter Research and Development Institute, Tianjin, 300011, China
autor
  • China Helicopter Research and Development Institute, Tianjin, 300011, China
Bibliografia
  • [1] KARACOCUK G., HÖFLINGER F., ZHANG R., REINDL L.M., LAUFER B., MÖLLER K., Inertial sensor-based respiration analysis, IEEE Transactions on Instrumentation and Measurement 68(11), 2019: 4268-4275. https://doi.org/10.1109/TIM.2018.2889363
  • [2] OH H.-S., SIM J., Interface debonding failure in beams strengthened with externally bonded GFRP, Composite Interfaces 11(1), 2004: 25-42. https://doi.org/10.1163/156855404322681037
  • [3] HODGE V.J., O’KEEFE S., WEEKS M., MOULDS A., Wireless sensor networks for condition monitoring in the railway industry: A survey, IEEE Transactions on Intelligent Transportation Systems 16(3), 2015: 1088-1106. https://doi.org/10.1109/TITS.2014.2366512
  • [4] ZHANG L., HAAS C., TIGHE S.L., Evaluating weigh-in-motion sensing technology for traffic data collection, [In] Proceedings of Annual Conference of the Transportation Association of Canada, Saskatoon, Saskatchewan, Canada, 2007: 1-17.
  • [5] MIHAILOV S.J., Fiber Bragg grating sensors for harsh environments, Sensors 12(2), 2012: 1898-1918. https://doi.org/10.3390/s120201898
  • [6] MUANENDA Y., FARALLI S., OTON C.J., DI PASQUALE F., Dynamic phase extraction in a modulated double-pulse ϕ-OTDR sensor using a stable homodyne demodulation in direct detection, Optics Express 26(2), 2018: 687-701. https://doi.org/10.1364/OE.26.000687
  • [7] ISSATAYEVA A., BEISENOVA A., TOSI D., MOLARDI C., Fiber-optic based smart textiles for real-time monitoring of breathing rate, Sensors 20(12), 2020: 3408. https://doi.org/10.3390/s20123408
  • [8] DE TOMMASI F., MASSARONI C., CAPONERO M.A., CARASSITI M., SCHENA E., PRESTI D.L., FBG-based mattress for heart rate monitoring in different breathing conditions, IEEE Sensors Journal 23(13), 2023: 14114-14122. https://doi.org/10.1109/JSEN.2023.3275323
  • [9] KIKUCHI K., NAITO T., OKOSHI T., Measurement of Raman scattering in single-mode optical fiber by optical time-domain reflectometry, IEEE Journal of Quantum Electronics 24(10), 1988: 1973-1975. https://doi.org/10.1109/3.8529
  • [10] KONG L.Q., WU Y.H., PANG Z.G., ZHAO Y.J., DONG L.Q., LIU M., HUI M., WANG W.J., GUO Y., WANG X.T., Measurement of heart rate based on ballistocardiography, Chinese Journal of Lasers 47(2), 2020: 0207042. https://doi.org/10.3788/CJL202047.0207042
  • [11] MAJUMDER M., GANGOPADHYAY T.K., CHAKRABORTY A.K., DASGUPTA K., BHATTACHARYA D.K., Fibre Bragg gratings in structural health monitoring—Present status and applications, Sensors and Actuators A: Physical 147(1), 2008: 150-164. https://doi.org/10.1016/j.sna.2008.04.008
  • [12] BURNOS P., GAJDA J., Thermal property analysis of axle load sensors for weighing vehicles in weigh-in-motion system, Sensors 16(12), 2016: 2143. https://doi.org/10.3390/s16122143
  • [13] BERNAL E., SPIRYAGIN M., COLE C., Onboard condition monitoring sensors, systems and techniques for freight railway vehicles: A review, IEEE Sensors Journal 19(1), 2019: 4-24. https://doi.org/10.1109/JSEN.2018.2875160
  • [14] FILOGRANO M.L., CORREDERA P., RODRÍGUEZ-PLAZA M., ANDRÉS-ALGUACIL A., GONZÁLEZ-HERRÁEZ M., Wheel flat detection in high-speed railway systems using fiber Bragg gratings, IEEE Sensors Journal 13(12), 2013: 4808-4816. https://doi.org/10.1109/JSEN.2013.2274008
  • [15] AL-TARAWNEH M., HUANG Y., In-pavement fiber Bragg grating sensor for vehicle speed and wheelbase estimation, Proceedings of the SPIE, Vol. 10598, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2018: 105982A. https://doi.org/10.1117/12.2295624
  • [16] AL-TARAWNEH M., HUANG Y., LU P., TOLLIVER D., Vehicle classification system using in-pavement fiber Bragg grating sensors, IEEE Sensors Journal 18(7), 2018: 2807-2815. https://doi.org/10.1109/ JSEN.2018.2803618
  • [17] ZHANG Z., HUANG Y., BRIDGELALL R., PALEK L., STROMMEN R., Sampling optimization for high-speed weigh-in-motion measurements using in-pavement strain-based sensors, Measurement Science and Technology 26(6), 2015: 065003. https://doi.org/10.1088/0957-0233/26/6/065003
  • [18] LIU Z., SHAO T., ZHANG X., BCG signal analysis based on improved VMD algorithm, Measurement 231, 2024: 114631. https://doi.org/10.1016/j.measurement.2024.114631
  • [19] SHAO T.P., LIU Z.C., Design of pulse and respiration monitoring system based on fiber optic sensing and VMD-FPR processing algorithm, Optical Fiber Technology 73, 2022: 103033. https://doi.org/10.1016/j.yofte.2022.103033
  • [20] LIU Z.C., ZHANG X., SHAO T.P., MENG J.H., Heartbeat and respiration monitoring based on FBG sensor network, Optical Fiber Technology 81, 2023: 103561. https://doi.org/10.1016/j.yofte.2023.103561
  • [21] DE FAZIO R., GRECO M.R., DE VITTORIO M., VISCONTI P., A differential inertial wearable device for breathing parameter detection: Hardware and firmware development, experimental characterization, Sensors 22(24), 2022: 9953. https://doi.org/10.3390/s22249953
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b593d340-28d5-4d5e-b3ac-2aec51522645
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.