Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper is devoted to the study of the mechanical, microstructural, and bio-corrosive behavior of low-alloyed Zn–Mg biodegradable surgical wires for bone reconstructions. Three biodegradable alloys with different magnesium content have been studied, their production technology has been developed and the product properties have been determined. The technology includes casting, extrusion, hot and cold drawing of the wire, and the product surface finishing. The paper shows the most important stages of the process (i.e., extrusion and drawing) in detail. The technological parameters have been selected based on the results of the computer modeling. The flow stress–strain curves of extruded materials have been obtained at various strain rates and temperatures. Two drawing technologies have been compared. The first one is the room temperature conventional wire drawing. In the second one, the first few passes have been made at an elevated temperature and the rest at room temperature. This allowed avoiding the breaking of the wire during the first passes (a typical issue of the conventional technology for these alloys) and increasing the ductility of the final product. Mechanical properties, bio-corrosion, and crystallographic texture of the material were determined at different stages of the processing. A simultaneous increase in the wire strength, the number of repeated bending until the rupture of the wire, and in the bio-corrosion rate due to drawing has been registered. This phenomenon coincided with a change in the crystallographic texture. It has been shown that the product tensile strength of about 250–300 MPa can be reduced by about 30% due to surgical knots tied on it.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
479--492
Opis fizyczny
Bibliogr. 37 poz., rys., wykr.
Twórcy
autor
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
autor
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
autor
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
autor
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
autor
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
autor
- Łukasiewicz Research Network-Metal Forming Institute, ul. Jana Pawła II 14, 61-139 Poznań, Poland
autor
- Division in Skawina, Łukasiewicz Research Network-Institute of Non-Ferrous Metals, ul. Piłsudskiego 19, 32-050 Skawina, Poland
Bibliografia
- [1] Barrows T. Degradable implant materials: a review of synthetic absorbable polymers and their applications. Clin Mater. 1986;1:233–57. https://doi.org/10.1016/S0267-6605(86)80015-4.
- [2] Middleton JC, Tipton AJ. Synthetic biodegradable polymers as orthopedic devices. Biomaterials. 2000;21:2335–46. https://doi.org/10.1016/S0142-9612(00)00101-0.
- [3] Böstman O, Pihlajamäki H. Clinical biocompatibility of biodegradable orthopaedic implants for internal fixation: a review. Biomaterials. 2000;21:2615–21. https://doi.org/10.1016/S0142-9612(00)00129-0.
- [4] Bergsma EJ, Rozema FR, Bos RR, de Bruijn WC. Foreign body reactions to resorbable poly(l-lactide) bone plates and screws used for the fixation of unstable zygomatic fractures. J Oral Maxillo-fac Surg Off J Am Assoc Oral Maxillofac Surg. 1993;51:666–70. https://doi.org/10.1016/s0278-2391(10)80267-8.
- [5] Daniels AU, Chang MK, Andriano KP. Mechanical properties of biodegradable polymers and composites proposed for internal fixation of bone. J Appl Biomater. 1990;1:57–78. https://doi.org/10.1002/jab.770010109.
- [6] Marques DR, dos Santos LA, Schopf LF, de Fraga JCS. Analysis of poly(lactic-co-glycolic acid)/poly(isoprene) polymeric blend for application as biomaterial. Polímeros. 2013;23:579–584. http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0104-14282013000500002&nrm=iso. Accessed 8 Mar 2021.
- [7] Meyle J. Suture materials and suture techniques. Perio. 2006;3:253–68.
- [8] Milenin A, Kustra P, Wróbel M, Paćko M, Byrska-Wójcik D. Comparison of the stress relaxation of biodegradable surgical threads made of Mg and Zn alloys and some commercial synthetic materials. Arch Metall Mater. 2019. https://doi.org/10.2442/amm.2019.129506.
- [9] Bergsma JE, de Bruijn WC, Rozema FR, Bos RRM, Boering G. Late degradation tissue response to poly(l -lactide) bone plates and screws. Biomaterials. 1995;16:25–31. https://doi.org/10.1016/0142-9612(95)91092-D.
- [10] Seitz J-M, Durisin M, Goldman J, Drelich JW. Recent advances in biodegradable metals for medical sutures: a critical review. Adv Healthc Mater. 2015;4:1915–36. https://doi.org/10.1002/adhm.201500189.
- [11] Huse EC. A new ligature? Chicago Med J Exam. 1878;37:171–2.
- [12] Witte F, Hort N, Vogt C, Cohen S, Kainer KU, Willumeit R, Feyerabend F. Degradable biomaterials based on magnesium corrosion. Curr Opin Solid State Mater Sci. 2008;12:63–72. https://doi.org/10.1016/j.cossms.2009.04.001.
- [13] Lambotte A. Technique et indications de prothèse perdue dans la traitement des fractures. Press Med Belge. 1909;17:321–3.
- [14] Seitz J-M, Eifler R, Bach F-W, Maier HJ. Magnesium degradation products: effects on tissue and human metabolism. J Biomed Mater Res A. 2014;102:3744–53. https://doi.org/10.1002/jbm.a.35023.
- [15] Milenin A, Kustra P, Byrska-Wójcik D, Wróbel M, Paćko M, Sulej-Chojnacka J, Matuszyńska S, Płonka B. The effect of in vitro corrosion on the mechanical properties of metallic high strength biodegradable surgical threads. Arch Civ Mech Eng. 2020;20:60. https://doi.org/10.1007/s43452-020-00062-w.
- [16] Fischer J, Pröfrock D, Hort N, Willumeit R, Feyerabend F. Improved cytotoxicity testing of magnesium materials. Mater Sci Eng B Solid-State Mater Adv Technol. 2011;176:830–4. https://doi.org/10.1016/j.mseb.2011.04.008.
- [17] Schümann K, Ettle T, Szegner B, Elsenhans B, Solomons NW. On risks and benefits of iron supplementation recommendations for iron intake revisited. J Trace Elem Med Biol. 2007;21:147–68. https://doi.org/10.1016/j.jtemb.2007.06.002.
- [18] Wegener B, Sievers B, Utzschneider S, Müller P, Jansson V, Rößler S, Nies B, Stephani G, Kieback B, Quadbeck P. Microstructure, cytotoxicity and corrosion of powder-metallurgical iron alloys for biodegradable bone replacement materials. Mater Sci Eng B Solid-State Mater Adv Technol. 2011. https://doi.org/10.1016/j.mseb.2011.04.017.
- [19] Venezuela JJD, Johnston S, Dargusch MS. The prospects for biodegradable zinc in wound closure applications. Adv Healthc Mater. 2019;8:e1900408. https://doi.org/10.1002/adhm.201900408.
- [20] Milenin A, Kustra P, Byrska-Wójcik D, Wróbel M, Packo M, Sulej-Chojnacka J, Matuszynska S. Production of zinc wire for use as a high strength biodegradable surgical threads. Procedia Manuf. 2020. https://doi.org/10.1016/j.promfg.2020.08.136.
- [21] Levy GK, Goldman J, Aghion E. The prospects of zinc as a structural material for biodegradable implants—a review paper. Metals (Basel). 2017. https://doi.org/10.3390/met7100402.
- [22] Kubásek J, Dvorský D, Šedý J, Msallamová Š, Levorová J, Foltán R, Vojtěch D. The fundamental comparison of Zn–2Mg and Mg–4Y–3RE alloys as a perspective biodegradable materials. Materials (Basel). 2019. https://doi.org/10.3390/ma12223745.
- [23] Jin H, Zhao S, Guillory R, Bowen PK, Yin Z, Griebel A, Schaffer J, Earley EJ, Goldman J, Drelich JW. Novel high-strength low-alloys Zn–Mg (< 0.1 wt% Mg) and their arterial biodegradation. Mater Sci Eng. 2018;84:67–79. https://doi.org/10.1016/j.msec.2017.11.021.
- [24] Liu S, Kent D, Doan N, Dargusch M, Wang G. Effects of deformation twinning on the mechanical properties of biodegradable Zn–Mg alloys. Bioact Mater. 2019;4:8–16. https://doi.org/10.1016/j.bioactmat.2018.11.001.
- [25] Galib RH, Sharif A. Development of Zn–Mg alloys as a degradable biomaterial. C Int Publ Adv Alloy Compd. 2016. https://doi.org/10.7726/aac.2016.1001.
- [26] Vojtěch D, Kubásek J, Serák J, Novák P. Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation. Acta Biomater. 2011;7:3515–22. https://doi.org/10.1016/j.actbio.2011.05.008.
- [27] Guleryuz LF, Ipek R, Arıtman I, Karaoglu S. Microstructure and mechanical properties of Zn–Mg alloys as implant materials manufactured by powder metallurgy method. AIP Conf Proc. 2017;1809:20020. https://doi.org/10.1063/1.4975435.
- [28] Okamura Y, Hinata N, Hoshiba T, Nakatsuji T, Ikeo N, Furukawa J, Harada K, Nakano Y, Fukumoto T, Mukai T, Fujisawa M. Development of bioabsorbable zinc–magnesium alloy wire and validation of its application to urinary tract surgeries. World J Urol. 2021;39:201–8. https://doi.org/10.1007/s00345-020-03138-7.
- [29] Kustra P, Wróbel M, Byrska-Wójcik D, Paćko M, Płonka B, Wróbel M, Sulej-Chojnacka J, Milenin A. Manufacture technology, mechanical and biocorrosion properties of the Zn and ZnMg0.008 alloy wires designed for biodegradable surgical threads. J Manuf Process. 2021;67:513–20. https://doi.org/10.1016/j.jmapro.2021.05.024.
- [30] Seitz J-M, Utermöhlen D, Wulf E, Klose C, Bach F-W. The manufacture of resorbable suture material from magnesium-drawing and stranding of thin wires. Adv Eng Mater. 2011;13:1087–95. https://doi.org/10.1002/adem.201100152.
- [31] Milenin A, Kustra P, Byrska-Wójcik D, Grydin O, Schaper M, Mentlein T, Gerstein G, Nürnberger F. Analysis of microstructure and damage evolution in ultra-thin wires of the magnesium alloy MgCa0.8 at multipass drawing. JOM. 2016. https://doi.org/10.1007/s11837-016-2127-3.
- [32] Liu C, Zhu X, Zhou H. Phase diagrams for magnesium alloy. Central South University Press; 2006. p. 63.
- [33] Biba N, Maximov A, Stebunov S, Vlasov A (2012) The model for simulation of thermally, mechanically and physically coupled problems of metal forming. In: Kusiak DSJ, Majta J (Eds) Proceedings of 14th International Conference on Metal Forming, Kraków, pp 1363–1366.
- [34] Williamson GK, Hall WH. X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1953;1:22–31. https://doi.org/10.1016/0001-6160(53)90006-6.
- [35] Shlomchack GG, Mamuzic I, Vodopivec F. Rheological similaity of metals and alloys. J Mater Process Tech. 1994;40:315–25. https://doi.org/10.1016/0924-0136(94)90458-8.
- [36] Slomchack GD, Milenin AA, Mamuzić I, Vodopivec F. A mathematical model of the formation of the plastic deformation zone in the rolling of rheologically complex metals and alloys. J Mater Process Technol. 1996;58:184–8. https://doi.org/10.1016/0924-0136(95)02099-3.
- [37] Häussermann U, Simak SI. Origin of the c/a variation in hexagonal close-packed divalent metals. Phys Rev B. 2001;64: 245114. https://doi.org/10.1103/PhysRevB.64.245114.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b5919e35-a89a-42cb-90a7-bdd158908885
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.