PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Deposition Of Oxide And Intermetallic Thin Films By Pulsed Laser (PLD) And Electron Beam (PED) Methods

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Osadzanie tlenkowych oraz międzymetalicznych cienkich filmów z wykorzystaniem lasera impulsowego (PLD) i wiązki elektronowej (PED)
Języki publikacji
EN
Abstrakty
EN
In this work the pulsed laser deposition (PLD) and the pulsed electron beam deposition (PED) techniques were used for fabrication of Mo-Bi2O3, La1-xSrxCoO3, La1-xCaxCoO3 and Al-Mg thin films. An influence of ablation process basic parameters on the coatings structure and properties was discussed. Two types of laser ablation systems were applied: one equipped with a KrF excimer and second with a Q-switched Nd:YAG. Films were deposited on Si and MgO substrates. Scanning (SEM) and transmission (TEM) electron microscopy, atomic force microscopy (AFM) as well as X-ray diffraction (XRD) were used for structural analysis. Investigations focused on structure and chemical composition showed that smooth and dense thin films with nanocrystalline structure, preserving the composition of the bulk target, could be obtained by the both PLD and PED techniques. Research study showed that by a proper selection of PLD and PED process parameters it was possible to deposit films with significantly decreased amount and size of undesirably nanoparticulates.
PL
Osadzanie laserem impulsowym (PLD) oraz osadzanie impulsową wiązka elektronową (PED) wykorzystane zostało do wytwarzania cienkich filmów typu: Mo-Bi2O3, La1-xSrxCoO3, La1-xCaxCoO3 and Al-Mg oraz Al-Mg. Dyskutowano wpływ podstawowych parametrów procesu ablacji na strukturę i właściwości uzyskiwanych powłok. Wykorzystane zostały dwa typy systemów do ablacji; jeden z ekscymerowym laserem KrF i drugi na bazie lasera Nd:YAG z modulatorem dobroci (Q-Switch). Filmy osadzano na podłożu Si i MgO. Skaningowa (SEM) i transmisyjna (TEM) mikroskopia elektronowa, mikroskopia sił atomowych (AFM), oraz dyfrakcja rentgenowska (XRD) wykorzystana została do analizy strukturalnej. Badania skoncentrowane na strukturze i składzie chemicznym wykazały jednorodną i zwartą budowę cienkich nanokrystalicznych filmów uzyskanych metodami PLD i PED utrzymujących skład odparowywanych tarcz. Wykazano doświadczalnie, że odpowiednie dobranie parametrów procesu pozwala otrzymywać filmy o istotnym zminimalizowaniu ilości i wymiarów niekorzystnych nanocząstek w powłoce.
Słowa kluczowe
Twórcy
autor
  • AGH University of Science and Technology, Al. A. Mickiewicza 30, 30-059 Krakow, Poland
autor
  • AGH University of Science and Technology, Al. A. Mickiewicza 30, 30-059 Krakow, Poland
autor
  • AGH University of Science and Technology, Al. A. Mickiewicza 30, 30-059 Krakow, Poland
autor
  • AGH University of Science and Technology, Al. A. Mickiewicza 30, 30-059 Krakow, Poland
  • AGH University of Science and Technology, Al. A. Mickiewicza 30, 30-059 Krakow, Poland
Bibliografia
  • [1] D. S. Rickerby, A. Matthews, Advanced Surface Coatings: a Handbook of Surface Engineering, Chapman and Hall, New York, 1991.
  • [2] T. Burakowski, T. Wierzchon, Surface engineering of metals: principles, equipment, technologies, CRC Press, 1999.
  • [3] B. G. Wendler. Functional coatings by PVD or CVD Methods, ITE Radom, ISBN 978-83-7789-001-1, 2011.
  • [4] J. M. Lackner, Industrially-scalled hybrid Pulsed Laser deposition at room temperature, OREKO sc., Krakow 2005.
  • [5] B. Major, Ablacja i osadzanie laserem impulsowym, Akapit, Kraków, 2002.
  • [6] C. Belouet, Appl. Surf. Sci. 96-98, 630-642 (1996).
  • [7] J. Kusiński, S. Kąc, A. Kopia, A. Radziszewska, M. Rozmus-Górniakowska, B. Major, Ł. Major, J. Marczak, A. Lisiecki, Bulletin of the Polish Academy of Sciences. Technical Sciences 60, 4, 711-728 (2012).
  • [8] J. Marczak, Analiza i usuwanie nawarstwień obcych z różnych materiałów metodą ablacji laserowej, BEL studio Sp. z o.o., Warszawa, 2004.
  • [9] A. A. Voevodin, S. J. P. Laube, S. D. Walck, J. S. Solomon, M. S. Donely, J. S. Zabinski, Combined of magnetron sputtering and pulsed laser deposition of carbides and diamond-like films”, Journal of Applied Physics 78, 4123 (1995).
  • [10] H. U. Krebs, S. Fühler and O. Bremert, Applied Surface Science 86, 86-89 (1995).
  • [11] B. Major, F. Bruckert, J. M. Lackner, R. Ebner, R. Kustosz, P. Lacki, Arch. Metal. and Mater. 53, 39-48 (2008).
  • [12] D. B. Chrisey, G. K. Hubler (Eds.), Pulsed Laser Deposition of Thin Films, John Wiley & Sons, New York, 1994.
  • [13] L. Cieniek, J. Kusinski, Inżynieria Materiałowa 4, 253-256 (2013).
  • [14] B. Major, Archives of Metallurgy and Materials 50, 35-46 (2005).
  • [15] L. Major, J. Morgiel, J. M. Lackner, M. Kot, M. Szczerba, B. Major, Advances Engineering Materials, Viley-VCH 7, 617-621(2008).
  • [16] B. Major, F. Bruckert, J. M. Lackner, R. Ebner, R. Kustosz, P. Lacki, Arch. Metal. and Mater. 53, 39-48 (2008).
  • [17] L. Major, J. M. Lackner, M. Kot, M. Janusz, B. Major, Bull. Pol. Ac Tech. 62, 3 565-570 (2014).
  • [18] A. Kopia, Materiały półprzewodnikowe o właściwościach katalitycznych, Wydawnictwo AGH, Kraków, 2011.
  • [19] M. Hobel, J. Greek, G. Linker, C. Schultheiss 56, 10, 973-975 (1990).
  • [20] R. J. Choudhary, S. B. Ogale, S. R. Shinde, V. N. Kulkarni, T. Venkatesan, K. S. Harshavardhan, M. Strikovski, B. Hannoyer, Appl. Phys. Lett. 84 1483 (2004).
  • [21] G. Müller, M. Konijnenberg, G. Krafft, C. Schultheiss, Deposition by means of pulsed electron beam ablation, Science and Technology of Thin Film (Singapore: World Scientific) 89, 1995
  • [22] S. D. Kovaleski, R. M. Gilgenbach, L. K. Ang, Y. T. Lau, J. Appl. Phys. 86, 7129 (1999).
  • [23] H. M. Christen, D. F. Lee, F. A. List, S. W. Cook, K. J. Leonard, L. Heatherly, P. M. Martin, M. Paranthaman, A. Goyal, C.M. Rouleau, Supercond. Sci. Technol. 18, 1168 (2005).
  • [24] V. A. Dediu, J. Lopez, F. C. Matacotta, P. Nozar, G. Ruani, R. Zamboni, C. Taliani, Phys. Status Solidi B 215, 625 (1999).
  • [25] R. J. Choudhary, S. B. Ogale, S. R. Shinde, V. N. Ulkarni, T. Venkatesan, K. S. Harshavardhan, M. Strikovski, B. Hannoyer, Appl. Phys. Lett. 84, 1483 (2004).
  • [26] M. Nistor, F. Gherendi, M. Magureanu, N. B. Mandache, A. Iochim, M. G. Banciu, L. Nedelcu, M. Popescu, F. Sava, H.V. Alexandru, Appl. Surf. Sci. 247, 169 (2005).
  • [27] H. L. Porter, C. Mion, A. L. Cai, X. Zhang, J. F. Muth, Materials Science and Engineering B 119, 210-212 (2005).
  • [28] P. Stadelmann: JEMS Java Electron Microscopy software, (2004), http://cimewww.epfl.ch/.
  • [29] P. Shuk, H. D. Wiemhöfer, U. Guth, W. Göpel, M. Greenblatt, Solid State Ionics 89, 179-196 (1996).
  • [30] H. A. Harwig, A. G. Gerards, J. Solid State Chem. 26 265 (1978).
  • [31] G. Sakai, T. Jinkawa, N. Miura, N. Yamazoe, Selective Detection of Nitrogen Monoxide by Using Bismuth Oxide-Based Sensor, Transducers’99, Sendai, Japan, 7-10 pp. 146-149, June 1999.
  • [32] A. Z. Adamyan, Z. N. Adamian, V. M. Aroutiounian, Sens. Actuators B, 93, 416–421 (2003).
  • [33] T. Takahashi, T. Esaka, H. Iwahara, Journal of Applied Electrochemistry, 7, 299-302 (1977).
  • [34] C. L. Gomez, O. Depablos-Rivera, J. C. Medina, P. Silva-Bermudez, S. Muhl, A. Zeinert, S.E. Rodil, Solid State Ionics 255, 147-152 (2014).
  • [35] S. Kac, T. Moskalewicz, Inżynieria Materiałowa 4, 295-298 (2013).
  • [36] J. Wu, C. Leighton, Physical Review B 67, 174408-174408-16 (2003).
  • [37] X. Yang, D. W. Park, M. I. l. Kim, Korea J. Chem. Eng. 24, (4) 592-595 (2007).
  • [38] P. R. N. Silva, A. B. Soares, Ecletica Química 34, 31-38 (2009).
  • [39] Y. Xiao Mao, Applied Mechanics and Materials 55-57, 1957-1961 (2011).
  • [40] Y. J. Yoo, K. K. Yu, Y. P. Lee, J. Y. Kim, Ch. J. Yu, K. W. Kim, J. Korean Physical Society 49, 2397-2401 (2006).
  • [41] K. H. Wong, W. Wu, P. W. Chan. J. T.Cheung, Thin Solid Films 312, 7-10 (1998).
  • [42] K. S. Hwang, H. M. Lee, S. S Min B. O Kang, J. of Sol-Gel Scien. and Tech. 18, 175-180 (2000).
  • [43] J. Szelc, A. Kopia, Ł. Cieniek, Thin films based on perovskite LaCoO3 deposited by pulsed laser deposition, Inżynieria Materiałowa 6, 903-906 (2013).
  • [44] M. Chmielowska, S. Villain, A. Kopia, J. P. Dallas, J. Kusinski, J. R. Gavarri, Ch. Leroux, Thin Solid Films 516, 3747-3754 (2008).
  • [45] S. Sun, L. Yang, G. Pang, S. Feng, Applied Catalysis A: General 401, 199-203 (2011)
  • [46] M. Lv, X. Xiu, Z. Pang, Y. Dai, L. Ye, Ch. Cheng, Sh. Han, Thin Solid Films 516, 2017-2021 (2008).
  • [47] M. Kumar, S. Srikanth, B. Ravikumar, T. C. Alex, S. K. Das, Materials Chemistry and Physics 113, 803-815 (2009).
  • [48] H. U. Krebs, M. Stoermer, S. Fehler, O. Bremert, M. Hamp, A. Pundt, H. Teichler, W. Blum, T.H. Metzger, Appl. Surf. Sc. 109/110, 563 (1997).
  • [49] A. Radziszewska, Journal of Microscopy 237, 384-387 (2010).
  • [50] A. Radziszewska, Solid State Phenomena 186, 160-163 (2012).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b58fff2f-2fa3-421e-9187-b9f29c732eef
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.