PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermal modeling of planar and cylindrical biomedical multilayers structures in frequency domain

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Planar and cylindrical thermal models of biomedical multilayer structures with perfusion are presented in this paper. For each layer the models are solved analytically in frequency domain using the Laplace transform. Modeling the multilayer structure allows formulating the set of linear equations with unknown integral constants. As a result, the thermal impedance Zth(jω) is calculated. Next, the poles of thermal impedance are estimated using Vector Fitting (VF) method. Finally, distribution of thermal time constants allows evaluating the temperature response T(t) of the modeled structure.
Wydawca
Rocznik
Strony
32--36
Opis fizyczny
Bibliogr. 19 poz., rys., tab., wykr., wzory
Twórcy
  • Lodz University of Technology, Institute of Electronics, Wólczańska 211/215, 90 924 Łódź, Poland
  • Lodz University of Technology, Institute of Electronics, Wólczańska 211/215, 90 924 Łódź, Poland
Bibliografia
  • [1] https://nl.mathworks.com/help/ident/ref/tfest.html
  • [2] https://www.comsol.com
  • [3] https://www.ansys.com/
  • [4] Chatzipanagiotou P., Strąkowska M., De Mey G., Chatziathanasiou V., Więcek B.: A new software tool for transient thermal analysis based on fast IR camera temperature measurement. Measurement Automation Monitoring, Feb. 2017, no. 62, vol. 63, ISSN 2450-2855, pp. 49-51.
  • [5] Strakowska M., Strąkowski R., Strzelecki M., De Mey G., Wiecek B.: Thermal modelling and screening method for skin pathologies using active thermography. Biocybernetics and Biomedical Engineering, 10.1016/j.bbe.2018.03.009.
  • [6] Strakowska M., Chatzipanagiotou P., De Mey G., Chatziathanasiou V., Więcek B.: Novel software for medical and technical Thermal Object Identification (TOI) using dynamic temperature measurements by fast IR cameras. 14th Quantitative InfraRed Thermography Conference, QIRT 2018, June 25-29, 2018, Berlin, DOI: 10.21611/qirt.2018.053 http://qirt.gel.ulaval.ca/archives/ qirt2018/ papers/053.pdf
  • [7] Strakowska M., Wiecek B., Strzelecki M., Kaszuba A.: Screening procedure based on cold provocation and thermal tissue modeling. 13th Quantitative Infrared Thermography Conference, 04-08 July 2016, Gdansk, Poland.
  • [8] Strąkowska M., Strąkowski R., Strzelecki M., De Mey G., Więcek B.: Evaluation of Perfusion and Thermal Parameters of Skin Tissue Using Cold Provocation and Thermographic Measurements, Metrology and Measurement Systems. The Journal of Committee on Metrology and Scientific Instrumentation of Polish Academy of Sciences, Volume 23, Issue 3 (Sep 2016).
  • [9] Strakowska M., De Mey G., Wiecek B., Strzelecki M.: A Three Layer Model for The Thermal Impedance of The Human Skin: Modeling And Experimental Measurements. Journal of Mechanics in Medicine and Biology, 15(3), 2015, DOI: 10.1142/S021951941550044X .
  • [10] Szekely V.: Identification of RC networks by deconvolution: Chances and limits. IEEE Trans. Circuits Syst., vol. 45, no. 3, pp. 244–258, 1998.
  • [11] Marco S., Palcin J., Samitier J.: Improved multiexponential transient spectroscopy by iterative deconvolution. IEEE Trans. In Instrumentation and Measurement, vol. 50, pp. 774-780, 2001.
  • [12] Garnier, H., Mensler M., Richard A.: Continuous-time Model Identification from Sampled Data: Implementation Issues and Performance Evaluation. International Journal of Control, 2003, Vol. 76, Issue 13, pp. 1337–1357.
  • [13] Ljung, L.: Experiments With Identification of Continuous-Time Models. Proceedings of the 15th IFAC Symposium on System Identification. 2009.
  • [14] Gustavsen B, Semlyen A.: Rational approximation of frequency domain responses by vector fitting, IEEE Trans. Power Delivery, vol. 14, no. 3, pp. 1052–1061, Aug. 1999.
  • [15] Gustavsen B.: Improving the pole relocating properties of vector fitting, IEEE Trans. Power Delivery, vol. 21, no. 3, pp. 1587–1592, Aug. 2006.
  • [16] Górecki K., Rogalska M., Zarębski J.: Parameter estimation of the electrothermal model of the ferromagnetic core. Microelectronics Reliability, Vol. 54, No. 5, pp. 978-984, 2014.
  • [17] Jibia A.U., Salami M-J: An Appraisal of Gardner Transform-Based Method of Transient Multiexponential Signal Analysis. International Journal of Computer theory and Engineering, vol. 4, pp. 16-24, 2012.
  • [18] T3Ster-Master Thermal Evaluation Tool – User’s Manual Version 2.2, Mentor Graphics Corporation.
  • [19] Harteveld A. A., Denswil N. P., Van Hecke W., Kuijf H. J., Vink A., Spliet W. G. M., Daemen M. J., Luijten P. R., Zwanenburg J. J. M., Hendrikse J., van der Kolk A. G.: Data on vessel wall thickness measurements of intracranial arteries derived from human circle of Willis specimens. Data in Brief, Vol. 19, August 2018, pp. 6-12.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b589a439-1ac1-4de3-9933-3eab54d6d7ae
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.