PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation on the dynamics of movement of cylindrical cleaning pigs through the bends of pipeline systems for fluid transportation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Development and implementation of methods for cleaning the internal cavity of pipelines in the process of transporting fluids is important to ensure their energy efficiency and safe operation. The dynamics of the movement of one-piece cylindrical cleaning pistons made of various materials (silicone compound, self-destructive elastic polymer composition, polyurethane foam assembly foam) in the pipelines of pipeline systems intended for fluid transportation were studied by modelling and experimentally. The dynamics of movement of solid cylindrical cleaning pigs made from various materials (silicone compound, self-destructive elastic-polymer composition, polyurethane foam) in bends of pipeline systems intended for fluid transportation were studied through modelling and experiments. The analysis of forces acting on the pig during its movement in the pipeline bend was conducted, and the equations of pig motion based on Newton's second law were formulated. Contact forces of normal reaction, arising due to pig bending in the pipeline bend and determining the magnitude of frictional force between the pig and the inner wall of the bend, were determined based on classical bending theory. The impact of the material's modulus of elasticity, from which the pig is made, on the magnitude of contact forces of normal reaction at the pig pressing points against the inner wall of the pipeline bend was established. A method for determining the conditions under which pigs made from different materials will pass through pipeline bends without stopping and getting stuck was proposed. An equation for calculating the minimum allowable pig movement speed at the entrance to the bend to ensure its passage without stopping and getting stuck was derived.
Rocznik
Tom
Strony
303--317
Opis fizyczny
Bibliogr. 15 poz.
Twórcy
  • Institute of Petroleum Engineering, Ivano-Frankivsk National Technical University of Oil and Gas, Karpatska 15 Street, 76019 Ivano-Frankivsk, Ukraine
  • Institute of Petroleum Engineering, Ivano-Frankivsk National Technical University of Oil and Gas, Karpatska 15 Street, 76019 Ivano-Frankivsk, Ukraine
  • Institute of Petroleum Engineering, Ivano-Frankivsk National Technical University of Oil and Gas, Karpatska 15 Street, 76019 Ivano-Frankivsk, Ukraine
  • Hydrocarbon Collection, Preparation, and Transportation Department, Joint Stock Company “Ukrgasvydobuvannya”, Kudriavska 26/28 Street, 04053 Kyiv, Ukraine
  • Department of Scientific and Technical Support for the Operation of Underground Gas Storage Facilities, Branch R&D Institute of Gas Transportation Joint Stock Company “Ukrtransgaz”, 16 Koneva Street, 61004 Kharkiv, Ukraine
Bibliografia
  • 1. Mohamed Azzam. 2023. Failure Analysis of Pipelines in the Oil and Gas Industry. In: The Book of Pipeline Engineering - Design, Failure, and Management, edited by Sayeed Rushd, Mohamed Ismail, 1-23. Saudi Arabia: IntechOpen. ISBN: 978-1-83768-000-9. DOI: https://doi.org/10.5772/intechopen.108140.
  • 2. Ivan Shatskyi, Andrii Struk. 2009. „Stressed state of pipeline in zones of soil local fracture”. Strength of Materials 41: 548-553. ISSN: 1573-9325. DOI: https://doi.org/10.1007/s11223-009-9165-9.
  • 3. Evstakhii Kryzhanivs’kyi, Vasyl Rudko, Ivan Shatskyi. 2004. „Estimation of admissible loads upon a pipeline in the zone of sliding ground”. Materials Science 40: 547-551. ISSN: 1573-885X. DOI: https://doi.org/10.1007/s11003-005-0076-z.
  • 4. Maciej Dutkiewicz, Taras Dalyak, Ivan Shatskyi, Tetyana Venhrynyuk, Andrii Velychkovych. 2021. „Stress Analysis in Damaged Pipeline with Composite Coating”. Applied Sciences 11(22): 10676. ISSN 2076-3417. DOI: https://doi.org/10.3390/app112210676.
  • 5. Maciej Dutkiewicz, Andrii Velychkovych, Andriy Andrusyak, Ivan Petryk, Andrii Kychma. 2023. „Analytical Model of Interaction of an Oil Pipeline with a Support of an Overpass Built in a Mountainous Area”. Energies 16(11): 4464. ISSN: 1996-1073. DOI: https://doi.org/10.3390/en16114464.
  • 6. Xiao Zhu, Chun Fu, Yu Wang, Shi Zhang. 2023. „Experimental research on the contact force of the bi-directional pig in oil and gas pipeline”. Petroleum Science 20(1): 474-481. ISSN 1995-8226. DOI: https://doi.org/10.1016/j.petsci.2022.08.021.
  • 7. Aidan O’Donoghue. 2002. „Why Pigs get Stuck, and how to avoid it”. In: Pipeline Pigging, Integrity Assessment, and Repair Conference: 1-16. Pipeline Research Limited. Amsterdam, Netherlands. 30 October 2002, Scientific Surveys, Beaconsfield, United Kingdom.
  • 8. Роман Кондрат, Андрій Угриновський, Василь Петришак, Тетяна Сапожкова. 2013. „Характеристика та вибір очисних пристроїв для очищення внутрішньої порожнини трубопроводів”. Розвідка та розробка нафтових і газових родовищ 3(48): 48-61. [In Ukrainian: Roman Kondrat, Andrii Uhrynovskyi, Vasyl Petryshak, Tetiana Sapozhkova „Characteristics and selection of cleaning devices for cleaning the internal cavity of pipelines”. Prospecting and Development of Oil and Gas Fields 3(48): 48-61]. ISSN: 1993-9973.
  • 9. Manuel Borregales, Ruben Ensalzado, Miguel Asuaje. 2014. „CFD Analysis of Phenomena Attributed to Pigging Run in a Straight Pipeline”. In: ASME 2014 International Mechanical Engineering Congress and Exposition: 1-7. American Society of Mechanical Engineers. Montreal, Quebec, Canada. 14-20 November 2014, ASME, Montreal, Quebec, Canada. ISBN: 978-0-7918-4954-5. DOI: https://dx.doi.org/10.1115/imece2014-37452.
  • 10. Tore Galta 2014. „Bypass Pigging of Subsea Pipelines Suffering Wax Deposition”. Master thesis. Trondheim, Norway: Norwegian University of Science and Technology.
  • 11. Chang Liu, Yungang Wei, Yuguang Cao, Shihua Zhang, Yongtai Sun. 2020. „Traveling ability of pipeline inspection gauge (PIG) in elbow under different friction coefficients by 3D FEM”. Journal of Natural Gas Science and Engineering 75(2): 103-134. ISSN: 1875-5100. DOI: https://doi.org/10.1016/j.jngse.2019.103134.
  • 12. Tan Nguyen, Dong Kim, Yong Rho, Sang Kim. 2001. „Dynamic modelling and its analysis for PIG flow through curved section in natural gas pipeline”. In: IEEE International Symposium on Computational Intelligence in Robotics and Automation: 492-497. American Society of Mechanical Engineers. Banff, Alberta, Canada. 29 July 2001 - 01 August 2001, IEEE, Banff, Alberta, Canada. ISBN: 0-7803-7203-4. DOI: https://dx.doi.org/10.1109/CIRA.2001.1013250.
  • 13. Majid Moghaddama, Saeed Jerbanb. 2015. „On the in-pipe inspection robots traversing through elbows”. International Journal of Robotics 4(2): 19-27. ISSN: 2008-7144.
  • 14. Віталій Огородніков, Іван Сивак, Микола Бабак. 2001. Опір матеріалів з елементами теорії пластичності. Частина 1. Вінниця: ВДТУ. [In Ukrainian: Vitalii Ohorodnikov, Ivan Syvak, Mykola Babak. 2001. Resistance of materials with elements of plasticity theory. Part 1. Vinnitsa: VSTU].
  • 15. Seungman Kim, Jongyeon Jeong, Kwanghyun Yoo, Huiryong Yoo, Yutaek Seo. 2022. „Experimental investigation on speed excursion of PIG due to friction variation in natural gas pipeline”. Journal of Natural Gas Science and Engineering 104: 104659. ISSN: 1875-5100. DOI: https://doi.org/10.1016/j.jngse.2022.104659.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b5849d7c-2a45-4823-bfa0-0e14fbc4dd77
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.