PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Use of biological methods for removal of H2S from biogas in wastewater treatment plants – a review

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Biogas is produced during anaerobic digestion of organic substances by a consortium of microorganisms. Biogas consists mainly of methane (CH4) and carbon dioxide (CO2). Other gases such as dinitrogen (N2), water vapour (H2O), ammonia (NH3), hydrogen sulfide (H2S) and other sulfur compounds could also be found therein. Biogas produced by waste biomass has been recognized as one of the most important alternative energy sources in the recent years. In order to be used as a source of energy to generate heat and electricity, biogas should be cleaned. H2S is a colourless, flammable, malodorous and toxic gas. The main issues due to the high concentrations of H2S in biogas are its corrosive action, which damages engines and the production of sulfur oxides (SOx) due to H2S combustion. The best ways to remove H2S from biogas are the biological methods with the use of biofilters, biotrickling filters, bioscrubbers and using of activated sludge.
PL
Biogaz jest produktem ubocznym beztlenowego rozkładu substancji organicznych przez mikroorganizmy. Biogaz głównie składa się z metanu (CH4) oraz dwutlenku węgla (CO2). Inne gazy wchodzące w jego skład to: azot (N2), para wodna (H2O), amoniak (NH3), siarkowodór (H2S) i inne związki siarki. Biogaz jest jednym z ważniejszych źródeł energii w ostatnich latach, ponieważ pochodzi z biomasy co stanowi alternatywę dla źródeł kopalnych. Przed konwersją do ciepła i energii elektrycznej biogaz należy oczyścić. H2S stanowiący składnik biogazu jest bezbarwnym, palnym, toksycznym odorantem. Głównym problemem wynikającym z obecności wysokiego stężenia H2S w biogazie jest jego korozyjne działanie na części silników oraz w wyniku spalania H2S tworzą się tlenki siarki (SOx). Najlepszym sposobem usunięcia H2S z biogazu są metody biologiczne, przy użyciu biofiltrów, reaktorów strużkowych, bioskruberów oraz zastosowanie osadu czynnego.
Rocznik
Strony
103--112
Opis fizyczny
Bibliogr. 84 poz.
Twórcy
  • Silesian University of Technology, Faculty of Energy and Environmental Engineering, Institute of Water and Wastewater Engineering, Konarskiego 18, 44-100, Gliwice, Poland
autor
  • Silesian University of Technology, Faculty of Energy and Environmental Engineering, Institute of Water and Wastewater Engineering, Konarskiego 18, 44-100, Gliwice, Poland
Bibliografia
  • [1] Burgess J.E., Parsons S.A., Stuetz R.M.; Developments in odour control and waste gas treatment biotechnology: a review. Biotechnology Advances, Vol. 19, 2001; pp.35-63.
  • [2] Dumont E.; H2S removal from biogas using bioreactors: a review. International Journal of Energy and Environment, Vol.6, Issue 5, 2015; pp.479-498.
  • [3] Abatzoglou N., Boivin S.; A review of biogas purification processes. Biofuels, Bioproducts, Biorefining, Vol.3, 2009; pp.42-71.
  • [4] Kang J.W., Jeong C.M., Kim N.J., KimM.I, Chang H.N.; On-site removal of H2S from biogas produced by food waste using an aerobic sludge biofilter for steam reforming processing. Biotechnology and Bioprocess Engineering, Vol.15, 2010; pp.505-511.
  • [5] Rasi S., Veijanen A., Rintala J.; Trace compounds of biogas from different biogas production plants. Energy, Vol.32, 2007; pp.1375-1380.
  • [6] Syed M., Soreanu G., Falletta P., Béland M.; Removal of hydrogen sulfide from gas streams using biological processes – A review. Canadian Biosystems Engineering/Le génie des biosystèmes au Canada, Vol. 48, 2006; pp.2.1-2.14.
  • [7] Alfonsín C., Lebrero R., Estrada J.M., Muñoz R., Kraakman N.J.R., Feijoo G., Moreira M.T.; Selection of odour removal technologies in wastewater treatment plants: A guideline based on Life Cycle Assessment. Journal of Environmental Management, Vol.149, 2015; pp.77-84.
  • [8] Gębicki J., Byliński H., Namieśnik J.; Measurement techniques for assessing the olfactory impact of municipal sewage treatment plants. Environmental Monitoring and Assessment, Vol.188, No.32, 2016 (DOI 10.1007/s10661-015-5024-2).
  • [9] Gostelowm P., Parsons S.A., Stuetz R.M.; Odour measurements for sewage treatment works. Water Research, Vol. 35, No.3, 2001; pp.579-597.
  • [10] Tang K., Baskaran V., Nemati M.; Bacteria of the Sulphur cycle: An overview of microbiology, biokinetics and their role in petroleum and mining industries. Biochemical Engineering Journal, Vol.44, 2009; pp.73-94.
  • [11] Janssen A.J.H., Lettinga G., de Keizer A.; Removal of hydrogen sulphide from wastewater and waste gases by biological conversion to elemental Sulphur Colloidal and interfacial aspects of biologically produced sulphur particles. Physicochemical and Engineering Aspects, Vol.151, 1999; pp.389-397.
  • [12] van Niel C.B.; On the morphology and physiology of the purple and green sulphur bacteria. Archievs of Microbiology, Vol.3, No.1, 1932; pp.1-112.
  • [13] Revah S., Morgan-Sagastume M.J.; Methods of Odor and VOC Control. In: Biotechnology for odor and air pollution control, Ed. by Shareefdeen Z., Singh A. Springer, Berlin Heidelberg, New York, 2005; pp.29-60.
  • [14] Burgess J.E., Parsons S.A., Stuetz R.M.; Developments in odour control and waste gas treatment biotechnology: a review. Biotechnology Advances, Vol.19, 2001; pp.35-63.
  • [15] Estrada J.M., Kraakman N. J. R. B., Muñoz R., Lebrero R.; A Comparative Analysis of Odour Treatment Technologies in Wastewater Treatment Plants. Environmental Science and Technology, Vol.45, 2011; pp.1100-1106.
  • [16] Mudliar S., Giri B., Padoley K., Satpute D., Dixit R., Bhatt P., Pandey R., Juwarkar A., Vaidya A.; Bioreactors for treatment of VOCs and odours – A review. Journal of Environmental Management, Vol.91, 2010; pp.1039-1054.
  • [17] Kennes C., Rene E.R., Veiga M.C.; Bioprocesses for air pollution control. Journal of Chemical Technology and Biotechnology, Vol.84, 2009; pp.1419-1436.
  • [18] Delhomenie M.C., Heitz M.; Biofiltration of air: a review. Critical Reviews In Biotechnology, Vol.25, 2005; pp.53-72.
  • [19] Singh A., Shareefdeen Z., Ward O.P.; Bioscrubber Technology. In: Biotechnology for odor and air pollution control, Ed. by Shareefdeen Z., Singh A. Springer, Berlin Heidelberg, New York, 2005; pp.169-190.
  • [20] Weckhuysen B., Vriens L., Verachtert H.; Biotreatment of ammonia- and butanal- containing waste gases. Applied Microbiology Biotechnology, Vol.42, 1994; pp.147-152.
  • [21] Smet E., Van Langenhove, H., Verstraete W.; Longterm stability of a biofilter treating dimethyl sulphide. Applied Microbiology Biotechnology, Vol.46, 1996; pp.191-196.
  • [22] Hong J.H., Park K.J.;Wood chip biofilter performance of ammonia gas from composting manure. Compost Science and Utilization, Vol.12, 2004; pp.25-30.
  • [23] Kafle G.K., Chen L., Neibling H., He B.B.; Field evaluation of wood bark-based down-flow biofilters for mitigation of odor, ammonia, and hydrogen sulfide emissions from confined swine nursery barns. Journal of Environmental Management, Vol.147, 2015; pp.164-174.
  • [24] Shareefdeen Z., Herner B., Wilson S.; Biofiltration of nuisance sulfur gaseous odors from a meat rendering plant. Journal of Chemical Technology and Biotechnology, Vol.77, 2002; pp.1296-1299.
  • [25] Kim H., Kim Y.J., Chung J.S., Xie Q.; Long-Term Operation of a Biofilter for Simultaneous Removal of H2S and NH3. Journal of the Air and Waste Management Association, Vol.52, 2002; pp.1389-1398.
  • [26] Yang Y., AlIen, E.R.; Biofiltration control of hydrogen sulfide. 1. Design and operational parameters. Journal of the Air and Waste Management Association, Vol.44, 1994; pp.863-868.
  • [27] Morgan-Sagastume M.J., Noyola A., Revah S., Ergas J.S.; Changes in physical properties of a compost biofilter treating hydrogen sulfide. Journal of the Air and Waste Management Association, Vol.53, 2003; pp.1011-1021.
  • [28] Wani A.H., Lau A.K., Branion R.M.R.; Biofiltration control of pulping odors – hydrogen sulfide: performance, macrokinetics and coexistence effects of organo-sulfur species. Journal of Chemical Technology and Biotechnology, Vol.74, 1999; pp.9-16.
  • [29] Wada A., Shoda M., Kubota H., Kobayashi T., Katayama F.Y., Kuraishi H.; Characteristics of H2S oxidizing bacteria inhabiting a peat biofilter. Journal of Fermentation Technology, Vol.64, 1986; pp.161-167.
  • [30] Cho K.S, Hirai M., Shoda, M.; Enhanced removal efficiency of malodorous gases in a pilot-scale peat biofilter inoculated with Thiobacillus thioparus DW44. Journal of Fermentation and Bioengineering, Vol.73, 1992; pp.46-50.
  • [31] Hartikainen T., Ruuskanen J., Martikainen P.J.; Carbon Disulfide and Hydrogen Sulfide Removal with a Peat Biofilter. Journal of the Air and Waste Management Association, Vol.51, 2001; pp.387-392.
  • [32] Oyarzún P., Arancibia F., Canales C., Aroca E.G.; Biofiltration of high concentration of hydrogen sulphide using Thiobacillus thioparus. Process Biochemistry, Vol.39, 2003; pp.165-170.
  • [33] Omri I., Aouidi F., Bouallagui H., Godon J.-J.,HamdiM.; Performance study of biofilter developed to treat H2S from wastewater odour. Saudi Journal of Biological Sciences, Vol.20, 2013; pp.169-176.
  • [34] Elias A., Barona A., Arreguy A., Rios J., Aranguiz I., Peñas J.; Evaluation of a packing material for the biodegradation of H2S and product analysis. Process Biochemistry, Vol.3, 2002; pp.813-820.
  • [35] Chung Y.C., Huang C., Tseng C.-P.; Operation optimization of Thiobacillus thioparus CHl 1 biofilter for hydrogen sulfide removal, Journal of Biotechnology, Vol.52, 1996; pp.31-38.
  • [36] Chung Y.C., Huang C., Tseng, C.-P.; Removal of hydrogen sulfide by immobilized Thiobacillus sp. strain CHil in a biofilter. Journal of Chemical Technology and Biotechnology, Vol.69, 1997; pp.58-62.
  • [37] Chung Y.C., Huang C., Tseng C.P.; Biological elimination of H2S and NH3 from waste gases by biofilter packed with immobilized heterotrophic bacteria. Chemosphere, Vol.43, 2001; pp.1043-1050.
  • [38] Chitwood D. E., Devinny J. S.; Treatment of mixed hydrogen sulfide and organic vapors in a rock medium biofilter. Water and Environment Research, Vol.73, 2001; pp.426-435.
  • [39] Shinabe K., Oketani S., Ochi T., Matsumura M.; Characteristics of hydrogen sulfide removal by Thiobacillus thiooxidans KS I isolated from a carrierpacked biological deodorization system. Journal of Fermentation and Bioengineering, Vol.80, 1995; pp.592-598.
  • [40] Malhautier L., Gracian C., Roux C.J., Fanlo L.J., Le Cloirec P.; Biological treatment process of air loaded with an ammonia and hydrogen sulfide mixture. Chemosphere, Vol.50, 2003; pp.145-153.
  • [41] Rattanapan Ch., Boonsawang P., Kantachote D.; Removal of H2S in down-flow GAC biofiltration using sulfide oxidizing bacteria from concentrated latex wastewater. Bioresource Technology, Vol.100, 2009; pp.125-130.
  • [42] Dumont E., Andrès Y., Le Cloirec P., Gaudina F.; Evaluation of a new packing material for H2S removed by biofiltration. Biochemical Engineering Journal, Vol.42, 2008; pp.120-127.
  • [43] Zhang Y., Liss S.N., Allen D.G.; Enhancing and modelling the biofiltration of dimethyl sulphide under dynamic methanol addition. Chemical Engineerin Science, Vol.62, 2007; pp.2474-2481.
  • [44] Park J., Evans E.A., Ellis T.G.; Development of a biofilter with tire-derived rubber particle media for hydrogen sulfide odor removal. Water, Air and Soil Pollution, Vol.215, 2011; pp. 145-153.
  • [45] Liang M.S., Liang Y.; Biological removal of H2S from the livestock manure using a biofilter. Biotechnology and Bioprocess Engineering., Vol.18, No.5, 2013; pp.1008-1015.
  • [46] Chouari R., Dardouri W., Sallami F., Rais M. B., Le Paslier D., Sghir A.; Microbial analysis and efficiency of biofiltration packing systems for hydrogen sulfide removal from wastewater off gas. Environmental Engineering Science, Vol.32, No.2, 2015; pp.121-128.
  • [47] Courtois A., Andrès Y., Dumont E.; H2S biofiltration using expanded schist as packing material: influence of packed bed configurations at constant EBRT. Journal of Chemical Technology and Biotechnology, Vol.90, 2015; pp.50-56.
  • [48] Rabbani K.A., Charles W., Kayaalp A., Cord-Ruwisch R., Ho G.; Pilot-scale biofilter for the simultaneous removal of hydrogen sulphide and ammonia at a wastewater treatment plant. Biochemical Engineering Journal, Vol.107, 2016; pp.1-10.
  • [49] Cox H.H.J., Deshusses M.A.; Combined removal of H2S and toluene in a single-stage biotrickling filter. In: Proc 93’d AnnualMeeting & Exhibition AirWaste Management Assocation, 2000; Pittsburgh, PA.
  • [50] Kraakman N.J.R., Koers B., Oosting R., Tessel P.; H2S removal using a new type of biotrickling filter. In: Proc Int Symp Biological Waste Gas Cleaning. Ed. By Prins WL, van HamJ, Maastricht. VDI, Düsseldorf, 1997; pp.209-214.
  • [51] Cox H.H.J., Deshusses M.A.; Co-treatment of H2S and toluene in a biotrickling filter. Chemical Engineering Journal, Vol.3901, 2001; pp.1-10.
  • [52] Cox H.H.J., Deshusses M.A.; Biotrickling filters for air pollution control. In: The Encyclopedia of Environmental Microbiology, Ed. by G. Britton, 2, 2002; pp.782-795. New York, NY: J. Wiley and Sons.
  • [53] van Durme G.P., Gilley A.D., Groff C.D.; Biotrickling filter treats high H2S in a collection system in Jacksonville, Florida. In: Proc Odor and Air Toxic Emissions 2002 Conference, Albuquerque, New Mexico.
  • [54] Gabriel D., Deshusses M.A.; Retrofitting existing chemical scrubbers to biotrickling filters for H2S emission control. In: Proc National Academy of Science of the USA 100, 2003; pp.6308-6312.
  • [55] Kim S., Deshusses M.A.; Development and experimental validation of a conceptual model for biotrickling filtration of H2S. Environmental Progress, 22, 2003; pp.119-128.
  • [56] Aroca G., Urrutia H., Núñez D., Oyarzún P., Guerrero K.; Comparison on the removal of hydrogen sulfide in biotrickling filters inoculated with Thiobacillus thioparus and Acidithiobacillus thiooxidans. Electronic Journal of Biotechnology, Vol.10, No.4, 2007; pp.514-520.
  • [57] Ramírez M., Gómez J.M., Aroca G., Cantero D.; Removal of hydrogen sulfide by immobilized Thiobacillus thioparus in a biotrickling filter packed with polyurethane foam. Bioresource Technology, Vol.100, No.21, 2009; pp.4989-4995.
  • [58] Montebello A.M., Fernández M., Almenglo F., Ramírez M., Cantero D., Baeza M., Gabriel D.; Simultaneous methylmercaptan and hydrogen sulfide removal in the desulfurization of biogas in aerobic and anoxic biotrickling filters. Chemical Engineering Journal, Vol.200-202, 2012; pp.237-246.
  • [59] Lafita C., Penya-Roja J.M., Sempere F., Waalkens A., Gabaldón C.; Hydrogen sulfide and odor removal by field-scale biotrickling filters: influence of seasonal variations of load and temperature. Journal Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering, Vol.47, No.7; pp.970-978.
  • [60] Ahmed W., Shareefdeen Z.M., Jabbar N.A.; Dynamic modeling and analysis of biotrickling filters in continuous operation for H2S removal. Clean Technologies and Environmental Policy, Vol.16, No.8, 2014; pp.1757-1765.
  • [61] Santos A., Guimerà X., Dorado A.D., Gamisans X., Gabriel D.; Conversion of chemical scrubbers to biotrickling filters for VOCs and H2S treatment at low contact times. Applied Microbiology and Biotechnology, Vol.99, 2015; pp.67-76.
  • [62] Kasperczyk D., Urbaniec K.; Application of a compact trickle-bed bioreactor to the biodegradation of pollutants from the ventillation air in a copper-ore mine. Journal of Cleaner Production, Vol.87, 2015; pp.971-976.
  • [63] Zhou Q., Liang H., Yang S., Jiang X.; The removal of hydrogen sulfide from biogas in a microaerobic biotrickling filter using polypropylene carrier as packing material. Applied Biochemistry Biotechnology, Vol.175, 2015; pp.3763-3777.
  • [64] Dijkman H.; Biological gas desulfurization. Med Fac Lanbouw, University Ghent, 1995; pp.2677-2684.
  • [65] Nishimura S., Yoda M.; Removal of hydrogen sulfide from an anaerobic biogas using a bioscrubber. Water Science and Technology, Vol.36, 1997; pp.349-356.
  • [66] Hansen N.; Odour’s biological option, Water Quality Int. (July/Aug), 1998; pp.12-14.
  • [67] Nurul Islam A.K.M., Hanaki K., Matsuo T.; Fate of dissolved odorous compounds in sewage treatment plants. Water Science and Technology, Vol.38, 1998; pp.337-344.
  • [68] Janssen A.J.H., Buisman C.J.; The Shell-Paques desulfurization process for H2S removal from high pressure natural gas, synthesis gas and Claus tail gas. In: Proc Ninth Gas Research Institute Sulfur Recovery Conference. 1999. San Antonio. Texas.
  • [69] Janssen A.J.H., Dijkman H., Janssen G.; Novel biological processes for the removal of H2S and S02 from gas streams, In: Environmental Technologies to Treat Sulfur Pollution. Ed by. Lens P., HulshoffPol L., IWA (Publisher), London, 2000; pp.265-279.
  • [70] Hansen N.G., Rindel K.; Bioscrubbing, an effective and economic solution to odor control at wastewater treatment plants. Water Science and Technology, Vol.41, 2000; pp.155-164.
  • [71] Potivichayanon S., Pokethitiyook P., Kruatrachue M.; Hydrogen sulfide removal by a novel fixed-film bioscrubber system. Process Biochemistry, Vol.41, No.3, 2006; pp.708-715.
  • [72] Fukuyama J., Itoh H., Honda A., Ose Y.; Studies on deodorization by activated sludge: I. Removal of malodorous sulfur-containing gases. Taiki Osen Gakkaishi (Journal of Japan Society of Air Pollution), Vol.14, No.10, 1979; pp.422-429.
  • [73] Fukuyama J., Inoue Z., Ose Y.; Deodorization of exhaust gas from wastewater and night-soil treatment plant by activated sludge. Toxicological Environmental Chemistry, Vol.12, 1986; pp.87-109.
  • [74] Kasakura T., Tatsukawa K.; On the scent of a good idea for odour removal. Water Quality Int, Vol.2, 1995; pp.24-27.
  • [75] Bowker R.P.G.; Biological odour control by diffusion into activated sludge basin. Water Science and Technology, Vol.4, No.6, 2000; pp.127-32.
  • [76] Barbosa V.L., Burgess J.E., Darke K., Stuetz R.M.; Activated sludge biotreatment of sulphurous waste emissions. Views in Environmental Science and Bio/Technology, Vol.1, 2002; pp.345-362.
  • [77] Barbosa, V.L., Stuetz, R.M.; Performance of activated sludge diffusion for biological treatment of hydrogen sulphide gas emissions. Water Science and Technology, Vol.68, No.9, 2013; pp.1932-1939.
  • [78] Estrada J.M., Kraakman N.J.R., Lebrero R., Muñoz R.; Integral approaches to wastewater treatment plant upgrading for odor prevention: Activated Sludge and Oxidized Ammonium Recycling. Bioresource Technology, Vol.196, 2015; pp.685-693.
  • [79] Bielefeldt A.R.; Activated sludge and suspended growth bioreactors. Ed. by Kennes C, Veiga MC. Kluwer, Dordrecht, 2001; pp.133-162.
  • [80] Metcalf, Eddy, Inc.; Wastewater engineering treatment and reuse. Fourth Edition, McGrawHill, 2003; New York.
  • [81] Kiesewetter J., Kraakman B., Cesca J., Trainor S., Witherspoon J.; Expanding the use of activated sludge at biological waste water treatment plants for odor control. In: Proceedings of the WEF Odors and Air Pollutants Conference, Louisville, Kentucky, 2012.
  • [82] Kasperczyk D., Barbusiński K.; Biooczyszczanie powietrza wentylacyjnego – Innowacyjna technologia biooczyszczania powietrza wentylacyjnego w kopalni rud miedzi z LZO i H2S za pomocą kompaktowego bioreaktora trójfazowego (Biological purification of ventilation air – Innovative biological technology purification of ventilation air from VOC and H2S in mine cooper ore using trickle bed reactor). Konsulting Polski, No.1-2, 2013; pp.55-60.
  • [83] Kasperczyk D., Barbusiński K.; Skutecznie, ekonomicznie i ekologicznie: Zastosowanie innowacyjnej technologii biooczyszczania powietrza z LZO (Effectively, economically and ecologically: Application of innovative biological technology of removal VOC from air) Lakier. Przem., No.3 (89), 2014; pp.76-79.
  • [84] Kasperczyk D., Urbaniec K., Barbusinski K.; Removal of Pollutants from the Air in a Copper-ore Mine Using a Compact Trickle-bed Bioreactor. Chemical Engineering Transactions, Vol.39, 2014; pp.1309-1314 (DOI: 10.3303/CET1439219).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b583bfb9-3768-4083-ac2a-40abebde4383
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.