Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper contains a short literature review on the subject of special type of thin film structures with resistive-switching memory effect. In the literature, such structures are commonly labeled as "memristors". The word "memristor" originates from two words: "memory" and "resistor". For the first time, the memristor was theoretically described in 1971 by Leon Chua as the 4th fundamental passive electronics element with a non-linear current-voltage behavior. The reported area of potential usage of memristor is enormous. It is predicted that the memristor could find application, for example in the domain of nonvolatile random access memory, flash memory, neuromorphic systems and so forth. However, in spite of the fact that plenty of papers have been published in the subject literature to date, the memristor still behaves as a "mysterious" electronic element. It seems that, one of the important reasons that such structures are not yet in practical use, is unsufficient knowledge of physical phenomena determining occurrence of the switching effect. The present paper contains a literature review of available descriptions of theoretical basis of the memristor structures, used materials, structure configurations and discussion about future prospects and limitations.
Słowa kluczowe
Rocznik
Tom
Strony
373--381
Opis fizyczny
Bibliogr. 62 poz., rys., wykr.
Twórcy
autor
- Faculty of Microsystem Electronics and Photonics, Wroclaw University of Science and Technology, Janiszewskiego 11/17, 50- 372 Wroclaw, Poland
autor
- Faculty of Microsystem Electronics and Photonics, Wroclaw University of Science and Technology, Janiszewskiego 11/17, 50- 372 Wroclaw, Poland
autor
- Faculty of Microsystem Electronics and Photonics, Wroclaw University of Science and Technology, Janiszewskiego 11/17, 50- 372 Wroclaw, Poland
autor
- Faculty of Microsystem Electronics and Photonics, Wroclaw University of Science and Technology, Janiszewskiego 11/17, 50- 372 Wroclaw, Poland
Bibliografia
- [1] Chew Z.J., and Li L., “A discrete memristor made of ZnO nanowires synthesized on printed circuit board”, Materials Letters, vol. 91, pp. 298–300, 2013, DOI: 10.1016/j.matlet.2012.10.011
- [2] Chua L.O., Memristor – “The Missing Circuit Element”, IEEE Transactions on Circuit Theory, vol. CT-18, no. 5, pp. 507 – 519, 1971, DOI: 10.1109/TCT.1971.1083337
- [3] Duraisamy N., Muhammad N.M., Kim H-C., Jo J-D., and Choi K-H, “Fabrication of TiO2 thin film memristor device using electrohydrodynamic inkjet printing”, Thin Solid Films, vol. 520, pp. 5070 – 5074, 2012, DOI: 10.1016/j.tsf.2012.03.003
- [4] Strukov D.B., Snider G.S., Stewart D.R., and Williams R.S., “The missing memristor found”, Nature, vol. 453, pp. 80 – 83, 2008, DOI: 10.1038/nature06932
- [5] Kirar V.P.S., “Memristor: The Missing Circuit Element and its Application”, International Scholarly and Scientific Research & Innovation, vol. 6, no. 12, pp. 1395 - 1397, 2012
- [6] Radwan A.G., and Fouda M.E., “Memristor: Models, Types, and Applications” in On the Mathematical Modeling of Memristor, Memcapacitor, and Meminductor, Chapter 2, Cham: Springer, 2015, DOI: 10.1007/978-3-319-17491-4_2
- [7] https://www.knowm.org, access date: 30.01.2020
- [8] Vongehr S., and Meng X., “The Missing Memristor has Not been Found”, Scientific Reports 5, 11657, 2015, DOI: 10.1038/srep11657
- [9] Kim H-D., An H-M., Seo Y., and Kim T.G., “Transparent Resistive Switching Memory Using ITO/AlN/ITO Capacitors”, IEEE Electron Device Letters, vol. 32, no. 8, pp. 1125 – 1127, 2011, DOI: 10.1109/LED.2011.2158056
- [10] Mazumder P., Kang S.M., and Waser R., “Memristors: Devices, Models, and Applications”, Proceedings of the IEEE, vol. 100, no. 6, pp. 1911-1919, 2012, DOI: 10.1109/JPROC.2012.2190812
- [11] Marani R., Gelao G., and Perri A.G., “A review on memristor applications”, Electronic Devices Laboratory, Electrical and Information Engineering Department, Polytechnic University of Bari, Digital Library of Cornell University: arXiv:1506.06899, https://arvix.org, 2015
- [12] Adhikari S.P., Sah M.P., Kim H., and Chua L.O., “Three Fingerprints of Memristor”, IEEE Transactions on Circuits and Systems, vol. 60, no. 11, pp. 3008 – 3021, 2013, DOI: 10.1109/TCSI.2013.2256171
- [13] Gale E., “TiO2-based memristors and ReRAM: materials, mechanisms and models (a review)”, Semiconductor Science and Technology, vol. 29, 2014, DOI: 10.1088/0268-1242/29/10/104004
- [14] Kim K.M., Kim G.H., Song S.J., Seok J.Y., Lee M.H., Yoon J.H., and Hwang C.S., “Electrically configurable electroforming and bipolar resistive switching in Pt/TiO2/Pt structures”, Nanotechnology, vol. 21, 2010, DOI: 10.1088/0957-4484/21/30/305203
- [15] Celano U., “Metrology and Physical Mechanisms in New Generation Ionic Device” in Chapter 2: Filamentary-based Resistive Switching, USA: Springer These, 2016
- [16] Qingjiang L., Khiat A., Salaoru I., Papavassiliou C., Hui X., and Prodromakis T., “Memory Impedance in TiO2 based Metal-Insulator-Metal Devices”, Scientific Reports 4:4522, 2014
- [17] Sawa A., “Resistive switching in transition metal oxides”, Materials Today, vol. 11, no. 6, 2008, DOI: 10.1038/srep04522
- [18] Wang L-G., Qian X., Cao Z-Y., Fang G-Y., Li A-D., and Wu D., “Excellent resistive switching properties of atomic layer-deposited Al2O3/HfO2/Al2O3 trilayer structures for non-volatile memory applications”, Nanoscale Research Letters, vol. 10, no. 135, 2015, DOI: 10.1186/s11671-015-0846-y
- [19] Waser, R., and Aono M., “Nanoionics-based resistive switching memories”, Nature Materials, vol. 6, 2007, DOI: 10.1038/nmat2023
- [20] Yang J.J., Pickett M.D., Li X., Ohlberg D.A.A., Stewart D.R., and Williams S.R., “Memristive switching mechanism for metal/oxide/metal nanodevices”, Nature Nanotechnology, vol. 3, 2008, DOI: 10.1038/nnano.2008.160
- [21] Sassine G., La Barbera S., Najjari N., Minvielle M., Dubourdieu C., and Alibart F., “Interfacial versus filamentary resistive switching in TiO2 and HfO2 devices”, Journal of Vacuum Science and Technology B 34, 012202, 2016, DOI: 10.1116/1.4940129
- [22] Sawa A., Fujii T., Kawasaki M., and Tokura Y., “Interface resistance switching at a few nanometer thick perovskite maganite active layers”, Applied Physics Letters 88, 232112, 2006, DOI: 10.1063/1.2211147
- [23] Joglekar Y.N., and Wolf S.J., “The elusive memristor: properities of basic electrical circuits”, European Journal of Physics, vol. 30, pp. 661 – 675, 2009, DOI: 10.1088/0143-0807/30/4/001
- [24] Lehtonen E., and Laiho M., “CNN Using Memristors for Neighborhood Connections”, 12th International Workshop on Cellular nanoscale Networks and their Applications (CNNA), pp. 1-4, 2010, DOI: 10.1109/CNNA.2010.5430304
- [25] Zhang L., Chen Z., Yang J. J., Wysocki B., McDonald N., and Chen Y., “A compact modeling of TiO2-TiO2-x memristor”, Applied Physics Letters 102, 153503, 2013, DOI: 10.1063/1.4802206
- [26] Simmons G. J., “Generalized Formula for the Electric Tunnel Effect between Similar Electrodes Separated by a Thin Insulating Film”, Journal of Applied Physics 34, 1793, 1963, DOI: 10.1063/1.1702682
- [27] Pickett D. M., Strukov B. D., Borghetti L. J., Yang J. J., Snider S. G., Stewart D., and Williams R. S., “Switching dynamics in titanium dioxide memristive devices”, Journal of Applied Physics 106 (074508), 2009, DOI: 10.1063/1.3236506
- [28] Wu H-G., Bao B-C., and Chen M., “Threshold flux-controlled memristor model and its equivalent circuit implementation”, Chinese Physics B, vol. 23, no. 11, 2014, DOI: 10.1088/1674-1056/23/11/118401
- [29] Kviatinsky S., Friedman G. E., Kolodny A., and Weiser C. U., “TEAM: ThrEshold Adaptive Memristor Model”, IEEE Transactions on Circuits and Systems, vol. 60, no. 1, 2013, DOI: 10.1109/TCSI.2012.2215714
- [30] Awais M.N., Muhammad N.M., Duraisamy N., Kim H.C., Jo J., and Choi K.H., “Fabrication of ZrO2 layer through electrohydrodynamic atomization for the printed resistive switch (memristor)”, Microelectronic Engineering, vol. 103, pp. 167 – 172, 2013, DOI: 10.1016/j.mee.2012.09.005
- [31] Parreira P., McVitie S., and MacLaren D.A., “Resistive switching in ZrO2 films: physical mechanism for filament formation and dissolution”, Journal of Physics: Conference Series, vol. 522, 012045, 2014, DOI: 10.1088/1742-6596/522/1/012045
- [32] Han Y., Cho K., and Kim S., “Characteristics of multilevel bipolar resistive switching in Au/ZnO/ITO devices on glass”, Microelectronic Engineering 88, pp. 2608-2610, 2011, DOI: 10.1016/j.mee.2011.02.058
- [33] Lee H-Y., Chen P-S., Wang C-C., Maikap S., Tzeng P-J., Lin C-H., Lee L-S., and Tsai M-J., “Low Power Switching of Nonvolatile Resistive Memory Using Hafnium Oxide”, Japanese Journal of Applied Physics, vol. 46, no. 4B, pp. 2175 – 2179, 2007, DOI: 10.1143/JJAP.46.2175
- [34] Tan T-T., Chen X., Guo T-T., and Liu Z-T., “Bipolar Resistive Switching Characteristics of TiN/HfOx/ITO Devices for Resistive Random Access Memory Applications”, Chinese Physics Letters, vol. 30, no. 10, pp. 107302 – 107302, 2013, DOI: 10.1088/0256-307X/30/10/107302
- [35] Dongale T.D., Shinde S.S., Kamat R.K., and Rajpure K.Y., “Nanostructured TiO2 thin film memristor using hydrothermal process”, Journal of Alloys and Compounds, vol. 593, pp. 267–270, 2014, DOI: 10.1016/j.jallcom.2014.01.093
- [36] Kim K.M., Han S., and Hwang C.S., “Electronic bipolar resistance switching in an anti-serially connected Pt/TiO2/Pt structure for improved reliability”, Nanotechnology, vol. 23, 035201, 2011, DOI: 10.1088/0957-4484/23/3/035201
- [37] Choi B. J., Jeaong D. S., and Kim S. K., “Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition”, Journal of Applied Physics 98, 033715, 2005, DOI: 10.1063/1.2001146
- [38] Chu D., Younis A., and Li S., “Direct growth of TiO2 nanotubes on transparent substrates and their resistive switching characteristics”, Journal of Physics D: Applied Physics 45, 355306, 2012, DOI: 10.1088/0022-3727/45/35/355306
- [39] Filatova E.O., Baraban A.P., Konashuk A.S., Konyushenko M.A., Selivanov A.A., Sokolov A.A., Schaefers F., and Drozd V.E., “Transparent-conductive-oxide (TCO) buffer layer effect on the resistive switching process in metal/ TiO2/TCO/metal assemblies”, New Journal of Physics, 16, 113014, 2014, DOI: 10.1088/1367-2630/16/11/113014
- [40] Jeong S. D., Schroeder H., and Waser R., “Coexistence of Bipolar and Unipolar Resistive Switching Behaviors in a Pt/TiO2/Pt stack”, Electrochemical and Solid-State Letters 10, 8, G51-G53, 2007, DOI: 10.1149/1.2742989
- [41] Szot K., Rogala M., Speier W., Klusek Z., Besmehn A., and Waser R., “TiO2- a prototypical memristive material”, Nanotechnology 22, 254001, 2011, DOI: 10.1088/0957-4484/22/25/254001
- [42] Dash C. S.., Sahoo S., and Prabaharan S. R. S., “Resistive switching and impedance characteristics of M/TiO2−x/TiO2/M nano-ionic memristor”, Solid State Ionics 324, pp. 218-225, 2018, DOI: 10.1016/j.ssi.2018.07.012
- [43] Xiao-Ping W., Min C., and Shen Y., “Switching mechanism for TiO2 memristor and quantitative analysis of exponential model parameters”, Chinese Physics B 24, 8, 088401, 2015, DOI: 10.1088/1674-1056/24/8/088401
- [44] Yang J.J., Strachan J. P., Miao F., Zhang M-X., Pickett M. D., Yi W., Ohlberg D. A. A., Medeiros-Riberio G., and Williams S. R., “Metal/TiO2 interfaces for memristive switches”, Applied Physics A 102, pp. 785-789, 2011, DOI: 10.1007/s00339-011-6265-8
- [45] Kambhala N., and Angappane S., “Aging effect of the resistive switching in ZnO thin film”, Physica Status Solidi B 254, 1700208, 2017, DOI: 10.1002/pssb.201700208
- [46] Kim H., Sah M.P., and Adhikari S.P., “Pinched Hysteresis Loops is the Fingerprint of Memristive Devices”, Division of Electronics Engineering, Chonbuk National University, Korea, Digital Library of Cornell University: arXiv:1202.2437, https://arvix.org (2012)
- [47] Wang S., Wang W., Yakopcic C., Shin E., Subramanyam G., and Taha T.M., “Experimental study of LiNbO3 memristors for use in neuromorphic computing”, Microelectronic Engineering 168, pp. 37-40, 2017, DOI: 10.1016/j.mee.2016.10.007
- [48] Kim K. M., Lee S. R., Kim S., Chang M., and Hwang C. S., “Self-Limited switching in Ta2O5/TaOx Memristors Exhibiting Uniform Multilevel Changes in Resistance”, Advanced Functional Materials 25, pp. 1527-1534, 2015, DOI: 10.1002/adfm.201403621
- [49] Kyriakides E., Carrara S., De Micheli G., and Georgiou J., “Low-cost compatible, Ta2O5-based hemi-memristor for neuromorphic circuits”, Electronics Letters 48, 23, pp. 1451-1452, 2012, DOI: 10.1049/el.2012.3311
- [50] Park H.T., Song J.S., Kim J.H., Kim G.S., Chung S., Kim Y.B., Lee J.K., Kim M.K., Choi J.B., and Hwang S.C., “Thickness effect of ultra-thin Ta2O5 resistance switching layer in 28 nm-diameter memory cell”, Scientific Reports 5, 15965, 2015, DOI: 10.1038/srep15965
- [51] Kwon S., Kim T-W., Jang S., Lee J-H., Kim N. D., Ji Y., Lee C-H., Tour J. M., and Wang G., “Structurally Engineered Nanoporous Ta2O5-x Selector-Less Memristor for High Uniformity and Low Power Consumption”, ACS Applied Materials and Interfaces 9, pp. 34015-34023, 2017, DOI: 10.1021/acsami.7b06918
- [52] Wang G., Lee J-H., Yang Y., Ruan G., Kim N. D., Ji Y., and Tour J. M., “Three-Dimensional Networked Nanoporous Ta2O5-x Memory system for Ultrahigh Density Storage”, Nano Letters 15, pp. 6009-6014, 2017, DOI: 10.1021/acs.nanolett.5b02190
- [53] D’Aquila K., Phatak C., Holt M. V., Stripe B. D., Tong S., Park W. I., Hong S. and Petford-Long A. K., “Bipolar resistance switching in Pt/CuOx/Pt via local electrochemical reduction”, Applied Physics Letters 104, 242902, 2014, DOI: 10.1063/1.4883398
- [54] Dong R., Lee D. S., Xiang W. F., Oh S. J., Seong D. J., Heo S. H., Choi H. J., Kwon M. J., Seao S. N., Pyun M. B., Hasan M., and Hwang H., “Reproducible hysteresis and resistive switching ine metal-CuxO-metal heterostructures”, Applied Physics Letters 90, 042107, 2007, DOI: 10.1063/1.2436720
- [55] Wang S-W., Huang C-W., Lee D-Y., Tseng T-Y., and Chang T-C., “Multilevel resistive switching in Ti/CuxO/Pt memory device”, Journal of Applied Physics 108, 114110, 2010, DOI: 10.1063/1.3518514
- [56] Yan P., Li Y., Hui Y. J., Zhong S. J., Zhou Y. X., Xu L., Liu N., Qian H., Sun H. J., and Miao X. S., “Conducting mechanisms of forming-free TiW/Cu2O/Cu memristive devices”, Applied Physics Letters 107, 083501, 2015, DOI: 10.1063/1.4928979
- [57] Goux L., Lisoni J. G., Jruczak M., Wouters D. J., Courtade L., and Muller C., “Coexistence of bipolar and unipolar resistive switching modes in NiO cells made by thermal oxidation of Ni layers”, Journal of Applied Physics 107, 024512, 2010, DOI: 10.1063/1.3275426
- [58] Heinonen O., Siegert M., Roelofs A., Petford-Long A. K., Holt M., D’Aquila K., and Li W., “Correlating structural and resistive changes in Ti:NiO resistive memory elements”, Applied Physics Letters 96, 103103, 2010, DOI: 10.1063/1.3355546
- [59] Li Y., Chu J., Duan W., Cai G., Fan X., Wang X., Wang G., and Pei Y., “Analog and Digital Bipolar Resistive Switching in Solution- Combustion-Processed NiO Memristor”, Applied Materials and Interfaces 10, pp. 24598-24606, 2018, DOI: 10.1021/acsami.8b05749
- [60] Seo S., Lee M.J., Seo D.H., Jeoung E.J., Suh D-S., Joung Y.S., Yoo I.K., Hwang I.R., Kim S.H., Byun I.S., Kim J-S., Choi J.S., and Park B.H., “Reproducible resistance switching in polycrystalline NiO films”, Applied Physics Letters 85, 5655, 2004, DOI: 10.1063/1.1831560
- [61] Prieto A., Prieto B., Ortigosa E.M., Ros E., Pelayo F., Ortega J., and Rojas I., “Neural networks: An overview of early research, current frameworks and new challenges”, Neurocomputing, 2016, DOI: 10.1016/j.neucom.2016.06.014
- [62] Ventra M.D., Pershin Y.V., and Chua L.O., “Circuit Elements With Memory: Memristors, Memcapacitors, and Meminductors”, Proceedings of the IEEE, vol. 97, no. 10, 2009, DOI: 10.1109/JPROC.2009.2021077
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b57e795f-7b0f-40e7-bbe3-f5dc69eb0334