Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
A state-of-the-art monitoring global navigation satellite system (GNSS) system has been originally designed and developed for various positioning and atmosphere-sensing purposes by the authors and updated to fulfil the challenging requirements for monitoring of ionospheric perturbations. The paper discusses various scientific and technically challenging issues, such as the requirement for an autonomous operating ground GNSS station and how this can be fulfilled. Basic algorithms for monitoring of local ionospheric perturbations with GNSS receivers are described. The algorithms require that inter-frequency hardware biases be known. Although the satellite transmitter biases can be obtain from the IGS services, the user takes responsibility for the estimation of frequency dependent receiver hardware biases and for the control of their variations. The instrumental signal delays are important for timing applications and GNSS monitoring of the ionosphere and are also required for recovering of the integer carrier-phase ambiguities. The paper presents an algorithm for calibration of inter-frequency biases of global positioning system (GPS) receivers and validates the first set of results.
Rocznik
Tom
Strony
54--59
Opis fizyczny
Bibliogr. 9 poz., rys.
Twórcy
autor
- Technische Universität Berlin, Department of Geodesy and Geoinformation Science Straße des 17. Juni 135, 10623 Berlin, Germany
autor
- Technische Universität Berlin, Department of Geodesy and Geoinformation Science Straße des 17. Juni 135, 10623 Berlin, Germany
Bibliografia
- 1. Arikan, F., Nayir, H., Sezen, U. & Arikan O. (2008) Estimation of single station interfrequency receiver bias using GPS-TEC. Radio Science 43:RS4004.
- 2. Coco D.S., Coker, C.E., Dahlke, R. & Clynch J.R. (1991) Variability of GPS satellite differential group delay biases. IEEE Transactions on Aerospace and Electronic Systems 27 (6). pp. 931–938.
- 3. Galas R., Reigber, Ch., Burghard, W. & Romstedt R. (2003) GPS Permanent Deformation Monitoring Array on Popocapetel Volcano. Internal report and poster presentation, GFZ-Potsdam.
- 4. Hartman G.K. & Leitinger R. (1984) Range errors due to ionospheric and tropospheric effects for signal frequencies above 100 KHz. Bulletin Geodesique 58 (2). pp. 109–136.
- 5. Hatch R. (1982) The synergism of GPS code and carrier measurements. Proceedings of the Interna-tional Geodetic Symposium on Satellite Doppler Positioning, Las Cruces, New Mexico. pp. 1213–1231.
- 6. Hofmann-Wellenhof, B., Lichtenegger, H. & Wasle E. (2008) GNSS Global Navigation Satellite Systems.
- 7. Jakowski, N., Mayer, C., Hoque, M.M. & Wilken, V. (2012) Total electron content models and their use in ionosphere monitoring. Radio Science 46.
- 8. Klobuchar J.A. (1996) Ionospheric Effects on GPS. In Global Positioning Systems: Theory and Applications 1. Eds: B.W. Parkinson and J.J. Spilker, Jr., American Institute of Aeronautics and Astronautics, pp. 547–568.
- 9. Mannucci, A.J., Iijima, B.A., Lindquister, U.J., Pi, X., Spatks, L. & Wilson, B.D. (1999) GPS and Ionosphere. Revised Submission to URSI Reviews of Radio Science. JPL. March 1999 edition.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniajacą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b57abfde-2784-42ae-8f68-81a8c5db2a16