PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A mathematical model for controlling a quadrotor UAV

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Model matematyczny do sterowania czterowirnikowym BSP
Języki publikacji
EN
Abstrakty
EN
Given the recent surge in interest in UAVs and their potential applications, a great deal of work has lately been done in the field of UAV control. However, UAVs belong to a class of nonlinear systems that are inherently difficult to control. In this study we devised a mathematical model for a PID (proportional integral derivative) control system, designed to control a quadrotor UAV so that it follows a predefined trajectory. After first describing quadrotor flight dynamics, we present the control model adopted in our system (developed in MATLAB Simulink). We then present simulated results for the use of the control system to move a quadrotor UAV to desired locations and along desired trajectories. Positive results of these simulation support the conclusion that a quadrotor UAV spatial orientation control system based on this model will successfully fulfil its task also in real conditions.
PL
Wobec rosnącego zainteresowania bezzałogowymi statkami powietrznymi (BSP) i ich potencjalnymi zastosowaniami, w ostatnim czasie wykonano wiele prac w dziedzinie ich lepszego sterowania. BSP jednak należą do klasy nielinearnych systemów, które są z natury trudne do sterowania. W niniejszej pracy opracowano model matematyczny dla systemu sterowania opartego na metodzie PID (proportional integral derivative), zaprojektowanego do sterowania czterowirnikowym BSP tak, aby podążał on po wcześniej zdefiniowanej trajektorii. Opisano dynamiki lotu czterowirnikowym BSP i zaprezentowano model kontroli zastosowany w naszym systemie (opracowany w programie MATLAB Simulink). Przedstawione są wyniki symulacji użycia systemu do sterowania czterowirnikowym BSP w celu jego przemieszczenia się do pożądanej lokalizacji oraz wzdłuż pożądanej trajektorii. Wyniki tych symulacji potwierdzają wniosek, że oparty na tym modelu system sterowania dla czterowirnikowego BSP może z powodzeniem spełnić swoje zadanie również w warunkach rzeczywistych.
Rocznik
Strony
58--70
Opis fizyczny
Bibliogr. 17 poz., rys., tab., wzory
Twórcy
  • Military University of Aviation, ul. Dywizjonu 303 no. 35 08-521 Dęblin, Poland
  • Lublin University of Technology, ul. Nadbystrzycka 38 D, 20-618 Lublin, Poland
autor
  • University of Žilina, Univerzitná 8215/1, 010 26 Žilina, Slovakia
Bibliografia
  • [1] Allen, M. and Lin, V., 2007, Guidance and Control of an Autonomous Soaring UAV, NASA/TM-2007-214611.
  • [2] Choi, H.S., Lee, S., Lee, J., Kim, E.T., and Shim, H., 2010, "Aircraft Longitudinal Auto-landing Guidance Law Using Time Delay Control Scheme," Transactions of the Japan Society for Aeronautical and Space Sciences, 53(181), pp. 207-214. doi: 10.2322/tjsass.53.207.
  • [3] Choi, H.S., Lee, S., Ryu, H., Shim, H. Ha, C, 2015, "Dynamics and Simulation of the Effects of Wind on UAVs and Airborne Wind Measurement," Transactions of the Japan Society for Aeronautical and Space Sciences, 58(4), pp. 187-192. doi: 10.2322/tjsass.58.187
  • [4] Hwang, S., Kim, S., Kim, C, Lee, and Y.G., 2016, "Aerodynamic Design of the Solar-Powered High Altitude Long Endurance (HALE) Unmanned Aerial Vehicle," International Journal of Aeronautical and Space Sciences, 17(1), pp. 132-138. doi: 10.5139/IJASS.2016.17.1.132.
  • [5] Langelaan, J.W., Alley, N., and Neidhoefer, J., 2010, "Wind Field Estimation for Small Unmanned Aerial Vehicles," AIAA Guidance, Navigation and Control Conference.
  • [6] Lee, B., Park, P., Kim, K., Kwon, S., 2014, "The Flight Test and Power Simulations of an UAV Powered by Solar Cells, a Fuel Cell and Batteries," J. of Mechanical Science and Technology, 28, pp. 399-405. doi: 10.1007/s12206-013-0936-7.
  • [7] Lee, S., Lee, J., and Lee, D.S., 2012, "Lateral and Directional SCAS Controller Design Using Multidisciplinary Optimization Program," J. Korean Soc. Aeronaut. Space Sci., 40(3), pp. 251-257. doi: 105139/JKSAS.2012.40.3.251
  • [8] Osborne, J. and Rysdyk, R., 2005. Waypoint Guidance for Small UAVs in Wind, AIAA Infotech@Aerospace.
  • [9] Setlak, L., Kowalik, R., and Redo, W., 2018, "Study of multi-pulse rectifiers of the PES system inaccordance with the concept of a more electric aircraft," WSEAS Transactions on Systems and Control, 13, Art. #20, pp. 161-170. https://www.wseas.org/multimedia/journals/control/2018/a405903-039.pdf
  • [10] Yoon, S. and Kim, Y., 2012, "Constrained Adaptive Backstepping Controller Design for Aircraft Landing in Wind Disturbance and Actuator Stuck," Int. J. Aeronaut. Space Sci., 13(1), pp. 74-89. doi: 10.5139/IJASS.2012.13.1.74
  • [11] Zhen, Li, Tiansheng, Hong, Ning, Wang, Tao, Wen, 2010, "Data transmission performance for 2.4GHz in-field wireless sensor network," 2nd International Conference on Computer Engineering and Technology (ICCET), vol. 1, pp. V1-465-V1-469.
  • [12] Ažaltovič, V., Škvareková, I., Pecho, P., and Kandera, B., 2020, "Calculation of the ground casualty risk during aerial work of unmanned aerial vehicles in the urban environment," Transportation Research Procedia, 44, pp. 271-275. doi: 10.1016/j.trpro.2020.02.043.
  • [13] Bugaj, M., Urminsky, T, Jurák, P. and Pecho, P., 2018, „Analysis and implementation of airworthiness directives," Transport Means - Proceedings of the International Conference, pp. 1174-1178.
  • [14] Cerňan, J., Pecho, P., Cúttová, M., and Semrád, K., 2018, "Structural analysis of centrifugal compressor impellers with different blade shapes," Transport Means - Proceedings of the International Conference, pp. 972-977.
  • [15] Čerňan, J. and Hocko, M., 2019, "The investigation of turbine blades damage in small jet engine," Transport Means - Proceedings of the International Conference, pp. 1285-1290.
  • [16] Fördös, P. and Čerňan, J., 2020, "Analysis of the impact of hard PVD coatings on the abrasion resistance of the compressor blades," Advances in Military Technology, 15(1), 85-95. doi: 10.3849/aimt.01333.
  • [17] Sedláčková, A. N., Kurdel, P., and Labun, J. 2020, "Simulation of unmanned aircraft vehicle flight precision," Transportation Research Procedia, 44, pp. 313-320. doi: 10.1016/j.trpro.2020.02.037.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b579fadd-17c0-459e-96cb-65b4a13c1c5d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.