PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ultra-low-voltage LNA with high gain and low noise figure

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We present a balun LNA with noise and distortion cancellation using double feedforward. A common-gate and a common-source stage are combined, and their resistive loads are replaced by transistors biased close to saturation to allows low supply voltage, without gain degradation. The proposed feedforward boosts the LNA gain and reduces the noise figure (NF). Simulation results with a 130 nm CMOS technology show that the gain is up to 24 dB and the NF is below 3.2 dB. The total power dissipation is 2.25 mW, leading to an FoM of 6.4 mW-1 with 0.6 V supply.
Słowa kluczowe
Twórcy
autor
  • Department of Electrical Engineering, Faculty of Sciences and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
  • Center of Technology and Systems (CTS-UNINOVA), Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
  • Department of Electrical Engineering, Faculty of Sciences and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
  • Center of Technology and Systems (CTS-UNINOVA), Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
  • INESC-ID, 1029 Lisbon, Portugal
  • Department of Electrical Engineering, Faculty of Sciences and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
  • Center of Technology and Systems (CTS-UNINOVA), Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
autor
  • Department of Electrical Engineering, Faculty of Sciences and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
  • Center of Technology and Systems (CTS-UNINOVA), Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
  • S3-Group, Madan Parque, Rua dos Inventores, 2825-182 Caparica, Portugal
autor
  • INESC-ID Lisboa, Tech. University of Lisbon, 1029 Lisbon, Portugal
Bibliografia
  • [1] K. Iniewski, VLSI Circuits for Biomedical Applications, Artech House, 2008.
  • [2] B. Razavi, RF Microelectronics, Prentice-Hall, 1998.
  • [3] T. H. Lee, The Design of CMOS Radio Frequency Integrated Circuits (2nd edition), Cambridge University Press, 2004.
  • [4] J. Crols and M. Steyaert, CMOS Wireless Transceiver Design, Kluwer, 1997.
  • [5] F. Bruccoleri, E. Klumperink, and B. Nauta, “Wide-band CMOS low-noise amplifier exploiting thermal noise canceling”, IEEE J. Solid-State Circuits, vol. 39, no. 2, pp. 275-282, Feb. 2004.
  • [6] S. Blaakmeer, E. Klumperink, D. Leenaerts, and B. Nauta, “Wideband Balun-LNA with Simultaneous Outputs Balancing, Noise-Canceling and Distortion-Canceling”, IEEE J. Solid-State Circuits, vol. 43, no. 6, pp. 1341-1350, June 2008.
  • [7] I. Bastos, L.B. Oliveira, J. Goes, M. Silva, “Balun LNA with continuously controllable gain and with noise and distortion cancellation” IEEE Int. Symposium Circuit and Systems (ISCAS 2012), pp. 2143-2146, May 2012.
  • [8] W. Hongrui, Z. Li, and Y. Zhiping, “A Wideband Inductorless LNA With Local Feedback and Noise Cancelling for Low-Power Low-Voltage Applications”, IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57, no. 8, pp. 1993-2005, Aug. 2010.
  • [9] M. El-NoZahi, A. Helmy, E. Sanchez-Sinencio, and K. Entesari, “An Inductor-Less Noise-Cancelling Broadband Low Noise Amplier With Composite Transistor Pair in 90 nm CMOS Technology”, IEEE J. Solid-State Circuits, vol. 46, no. 5, pp. 1111-1122, May 2011.
  • [10] F. Belmas, F. Hameau, and J. Fournier, “A Low Power Inductorless LNA With Double Gm Enhancement in 130 nm CMOS”, IEEE J. Solid-State Circuits, vol. 47, no. 5, pp. 1094-1103, 2012.
  • [11] K.W. Chew, K.S. Yeo, and S. F. Chu, “Effect of technology scaling on the 1/f noise of deep submicron MOS transistors”, Solid-State Electron, vol. 48, pp. 1101-1109, 2004.
  • [12] M. Manghisoni, L. Ratti, V. Re, V. Speziali, and G. Traversi, “Noise Characterization of 130 nm and 90 nm CMOS Technologies for Analog Front-end Electronics”, IEEE Nuclear Science Symposium Conference, vol. l, pp. 214-218, 2006.
  • [13] Meng-Ting Hsu; Ta-Cheng Liu, "Using inverter structure for 2~6GHz low power high gain low noise amplifier”, Microwave Conference Proceedings (APMC), 2010 Asia-Pacific, pp.346,349, 7-10 Dec. 2010.
  • [14] A. J. Drake, N. Zamdmer, K. J. Nowka, and R. B. Brown, "Analysis of the impact of gate-body signal phase on DTMOS inverters in 0.13 um PD-SOI," in IEEE International SOI Conference, pp. 99-100, 2003.
  • [15] D. Linten, et al, “Low-power 5 GHZ LNA and VCO in 90 nm RF CMOS”, 2004 Symposium on VLSI Circuits, Digest of Technical Papers, pp. 372-375, June 2004.
  • [16] J.-H. C. Zhan and S. S. Taylor, “A 5 GHZ resistive-feedback CMOS LNA for low-cost multi-standard applications,” in IEEE ISSCC 2006 Dig. Tech. Papers, Feb. 2006, pp. 200—201.
  • [17] R. Bagheri, A. Mirzaei, S. Chehrazi, M. E. Heidari, M. Lee, M. Mikhemar, W. Tang, and A. A. Abidi, “An 800-MHz—6-GHZ software- defined wireless receiver in 90-nm CMOS,” IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2860—2876, Dec. 2006.
  • [18] P.-I. Mak and R. Martins, “Design of an ESD-Protected Ultra-Wideband LNA in Nanoscale CMOS for Full-Band Mobile TV Tuners”, IEEE Trans. Circuits Systems I, vol. 56, pp. 933-942, May 2009.
  • [19] A. Amer, E. Hegazi, and H. Ragai, “A low power wideband CMOS LNA for WiMax”, IEEE Trans. Circuits Systems. II, vol. 54 no. 1, pp. 4- 8, Jan. 2007.
  • [20] J. Xiao, I. Mehr, J. Silva-Martinez, "A High Dynamic Range CMOS Variable Gain Amplifier for Mobile DTV Tuner," IEEE J. Solid-State Circuits, vol.42, no.2, pp.292-301, Feb. 2007.
  • [21] K. Han; L. Zou; Y. Liao; H. Min; Z. Tang; , "A wideband CMOS variable gain low noise amplifier based on single-to-differential stage for TV tuner applications," IEEE Solid-State Circuits Conference, A-SSCC '08, pp.457-460, 3-5 Nov. 2008.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b5757109-2458-42d7-b9a0-807e94ec380c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.