PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An Adaptive Control Strategy for a Low-Ripple Boost Converter in BLDC Motor Speed Control

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Conventional boost converters are widely used for connecting low-voltage power sources and inverters in motor control. However, a large filter capacitor bank is often used to reduce DC-link ripples that occur when an inverter is connected to a boost converter. Otherwise, significant voltage and current perturbations can impact on battery performance degradation and cause torque ripple, speed ripple and vibration in brushless DC (BLDC) motors. To suppress the converter’s DC-link ripple, this paper proposes a new control strategy for boost converter controller to generate low-ripple DC-link voltage or current at different motor speeds. In the proposed method, observers are designed to adaptively estimate the DC-link voltage and current harmonics. The harmonic terms are used as feedback signals to calculate the DC converter’s duty cycle. The entire control model is implemented on an embedded system, and its robustness is verified by simulation and experimental results that show the DC-link voltage and current ripples can be reduced by about 50% and 30%, respectively.
Słowa kluczowe
Wydawca
Rocznik
Strony
242--259
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
autor
  • Penn State University, 3550 7th Street Rd, New Kensington, PA 15068, USA
autor
  • Penn State University, 30 East Swedesford Rd, Malvern, PA 19355, USA
Bibliografia
  • Aljarajreh, H., Lu, D. D. and Tse, C. K. (2019). Synthesis of Dual-Input Single-Output DC/DC Converters. 2019 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–5.
  • Amamra, S. A., Tripathy, Y., Barai, A., Moore, A. D. and Marco, J. (2020). Electric Vehicle Battery Performance Investigation Based on Real World Current Harmonics. Energies, 13(2), pp. 489.
  • Arogbonlo, A., Trinh, H. and Oo, A. M. T. (2019). Design of Observers for Positive Systems with Delayed Input and Output Information. IEEE Transactions on Circuits and Systems II: Express Briefs, 67(1), pp. 107–111.
  • Axelrod, B., Berkovich, Y., Tapuchi, S. and Ioinovici, A. (2009). Single-Stage Single-Switch Switched-Capacitor Buck/Buck-Boost-Type Converter. IEEE Transactions on Aerospace and Electronic Systems, 45(2), pp. 419–430.
  • Bamgboje, D. O., Harmon, W., Tahan, M. and Hu, T. (2019). Low Cost High Performance Led Driver Based on a Self-Oscillating Boost Converter. IEEE Transactions on Power Electronics, 34(10), pp. 10021–10034.
  • Chen, T.-C., Shieh, S. H. and Ren, T.-J. (2017). Torque Ripple Reduction of Brushless DC Motor Using Genetic Algorithm. Proceedings of the 4th international conference on control, dynamic systems, and robotics, Toronto, ON, Canada, pp. 21–23.
  • Darba, A., De Belie, F. and Melkebeek, J. A. (2015). A Back-Emf Threshold Self-Sensing Method to Detect the Commutation Instants in BLDC Drives. IEEE Transactions on Industrial Electronics, 62(10), pp. 6064–6075.
  • Deng, X., Mecrow, B., Wu, H. and Martin, R. (2017). Design and Development of Low Torque Ripple Variable-Speed Drive System with Six-Phase Switched Reluctance Motors. IEEE Transactions on Energy Conversion, 33(1), pp. 420–429.
  • Devarakonda, L., Wang, H. and Hu, T. (2014). Parameter Identification of Circuit Models for Lead-Acid Batteries under Non-Zero Initial Conditions. 2014 American Control Conference, pp. 4360–4365.
  • Doss, M., Dash, S., Mahesh, D. and Marthandan, V. (2013). A Model Predictive Control to Reduce Torque Ripple for Brushless DC Motor with Inbuilt Stator Current Control. Universal Journal of Electrical and Electronic Engineering, 1(3), pp. 59–67.
  • Fassinou, F., Wang, H., Devarakonda, L. and Hu, T. (2014). Observer-Based Method for Reduction of DC-Link Voltage Ripple in Two-Stage Boost Inverters. 2014 American Control Conference, pp. 4348–4353.
  • Forouzesh, M., Siwakoti, Y. P., Gorji, S. A., Blaabjerg, F. and Lehman, B. (2017). Step-up DC–DC Converters: A Comprehensive Review of Voltage-Boosting Techniques, Topologies, and Applications. IEEE Transactions on Power Electronics, 32(12), pp. 9143–9178.
  • Gu, Y. and Zhang, D. (2012). Interleaved Boost Converter with Ripple Cancellation Network. IEEE Transactions on Power Electronics, 28(8), pp. 3860–3869.
  • Hu, T., Teel, A. R. and Lin, Z. (2005). Lyapunov Characterization of Forced Oscillations. Automatica, 41(10), pp. 1723–1735.
  • Jung, H., Wang, H. and Hu, T. (2014). Control Design for Robust Tracking and Smooth Transition in Power Systems with Battery/Supercapacitor Hybrid Energy Storage Devices. Journal of Power Sources, 267, pp. 566–575.
  • Lee, W., Han, B.-M. and Cha, H. (2011). Battery Ripple Current Reduction in a Three-Phase Interleaved DC-DC Converter for 5kw Battery Charger. 2011 IEEE Energy Conversion Congress and Exposition, pp. 3535–3540.
  • Liu, W., Wang, Z., Wang, G., Zeng, Q., He, W., Liu, L., Wang, X., Xi, Y., Guo, H., Hu, C. and Wang, Z. L. (2020). Switched-Capacitor-Convertors Based on Fractal Design for Output Power Management of Triboelectric Nanogenerator. Nature Communications, 11(1), pp. 1883.
  • Nahavandi, A., Hagh, M. T., Sharifian, M. B. B. and Danyali, S. (2015). A Nonisolated Multiinput Multioutput DC–DC Boost Converter for Electric Vehicle Applications. IEEE Transactions on Power Electronics, 30(4), pp. 1818–1835.
  • Nguyen, B. L. H., Cha, H., Nguyen, T. T. and Kim, H. G. (2018). Family of Integrated Multi-Input Multi-Output DC-DC Power Converters. 2018 International Power Electronics Conference (IPEC-Niigata 2018 -ECCE Asia), pp. 3134–3139.
  • Prathibanandhi, K. and Ramesh, R. (2018). Hybrid Control Technique for Minimizing the Torque Ripple of Brushless Direct Current Motor. Measurement and Control, 51(7–8), pp. 321–335.
  • Racewicz, S., Kazimierczuk, P., Kolator, B. and Olszewski, A. (2018). Use of 3 Kw BLDC Motor for Light Two-Wheeled Electric Vehicle Construction. IOP Conference Series: Materials Science and Engineering, 421(4), pp. 042067.
  • Rashed, M., Klumpner, C. and Asher, G. (2010). High Performance Multilevel Converter Topology for Interfacing Energy Storage Systems with Medium Voltage Grids. IECON 2010-36th Annual Conference on IEEE Industrial Electronics Society, pp. 1825–1831.
  • Shi, H., Wen, H., Hu, Y. and Jiang, L. (2018). Reactive Power Minimization in Bidirectional DC–DC Converters Using a Unified-Phasor-Based Particle Swarm Optimization. IEEE Transactions on Power Electronics, 33(12), pp. 10990–11006.
  • Tay, H. Q., Nam, V. T., Duc, N. H. and Chau, B. N. (2012). A Current Sensing Circuit Using Current-Voltage Conversion for Pmos-Based LDO Regulators. 2012 International Symposium on Computer Applications and Industrial Electronics (ISCAIE), pp. 1–4.
  • Tofoli, F. L., Pereira, D. D. C., Josias De Paula, W. and Oliveira Júnior, D. D. S. (2015). Survey on Non-Isolated High-Voltage Step-up DC–DC Topologies Based on the Boost Converter. IET Power Electronics, 8(10), pp. 2044–2057.
  • Uddin, K., Moore, A. D., Barai, A. and Marco, J. (2016). The Effects of High Frequency Current Ripple on Electric Vehicle Battery Performance. Applied Energy, 178, pp. 142–154.
  • Ullah, S. (2021). Robust Back-Stepping Based Higher Order Sliding Mode Control of Non-Inverted Buck-Boost Converter for a Photovoltaic System. Power Electronics and Drives, 6(1), pp. 113–127.
  • Wang, H. (2019). A Boost Converter Design with Low Output Ripple Based on Harmonics Feedback. arXiv preprint arXiv:1901.10020.
  • Wang, H. and Hu, T. (2020). Multichannel Sequential Display Led Driver with Optimal Transient Performance and Efficiency Via Synchronous Integral Control. IET Power Electronics [Online], 13(15), pp. 3226–3233. Available at: https://digital-library.theiet.org/content/journals/10.1049/iet-pel.2020.0128.
  • Wang, H., Tahan, M. and Hu, T. (2016). Effects of Rest Time on Equivalent Circuit Model for a Li-Ion Battery. 2016 American Control Conference (ACC), pp. 3101–3106.
  • Waradzyn, Z., Stala, R., Skała, A., Mondzik, A. and Penczek, A. (2018). A Cost-Effective Resonant Switched-Capacitor DC-DC Boost Converter – Experimental Results and Feasibility Model. Power Electronics and Drives, 3(38), pp. 75–83.
  • Wen, H. and Su, B. (2016). Hybrid-Mode Interleaved Boost Converter Design for Fuel Cell Electric Vehicles. Energy Conversion and Management, 122, pp. 477–487.
  • Wen, H., Xiao, W. and Su, B. (2014). Nonactive Power Loss Minimization in a Bidirectional Isolated DC–DC Converter for Distributed Power Systems. IEEE Transactions on Industrial Electronics, 61(12), pp. 6822–6831.
  • Wu, C., Chen, J., Xu, C. and Liu, Z. (2016). Adaptive Control Strategy of a Fuel Cell/Battery Hybrid Power System. 2016 American Control Conference (ACC), pp. 7492–7497.
  • Yang, P., Chi, K. T., Xu, J. and Zhou, G. (2015). Synthesis and Analysis of Double-Input Single-Output DC/DC Converters. IEEE Transactions on Industrial Electronics, 62(10), pp. 6284–6295.
  • Zhang, Z., Wei, H., Zhang, W. and Jiang, J. (2021). Ripple Attenuation for Induction Motor Finite Control Set Model Predictive Torque Control Using Novel Fuzzy Adaptive Techniques. Processes, 9(4), pp. 710.
  • Zhong, Q.-C. and Konstantopoulos, G. C. (2016). Nonlinear Current-Limiting Control for Grid-Tied Inverters. 2016 American Control Conference (ACC), pp. 7472–7477.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b5750f1a-c6b7-4929-9c32-9de756356e8b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.