PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Characteristics and potential use of residual waste from bauxite ore processing industry in West Kalimantan, Indonesia

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Bauxite ore processing industry in West Kalimantan generates a voluminous waste that posses potential environmental risks due to its high pH and mineral contents. However, the substantial presence of calcium, silica, aluminum, and iron in the bauxite ore processing waste (BOPW) also presents opportunities for beneficial utilization. This study investigates the potential use of BOPW as liner material in municipal solid waste landfills, in order to minimize groundwater contamination risk. Physical, chemical, mineralogical, and environmental characteristics, which comprise water content, specific gravity, particle size, toxicity characteristic leaching procedure (TCLP), atterberg limit, compaction, consolidation were measured using relevant ASTM and USEPA methods. The results showed that the BOPW exhibited favorable properties as landfill liner. The low moisture content (20.35%), cohesiveness, and specific gravity of 2.94, low hydraulic conductivity (7.56 × 10-7 cm/s) suggested suitability of the BOPW for landfill liner. Chemical analysis revealed predominant components of Fe2O3, Al2O3, SiO2, and Na2O, while mineralogical examination identified the presence of quartz, magnetite, hematite, and lime. The high pH value (11.93) supported chemical stability and immobilization of heavy metal contaminants. Despite favorable results of TCLP test, leachate quality analysis revealed elevated sodium concentrations (266 mg/L), which raised concerns about potential impact on surface water quality, particularly with the absence of specific regulatory standards. This study highlights BOPW's potential as a suitable landfill liner material, although further assessment for its long-term performance and application suitability is needed.
Rocznik
Strony
355--372
Opis fizyczny
Bibliogr. 138 poz., rys., tab
Twórcy
  • Department of Environmental Engineering, Faculty of Civil, Planning, and Geo-Engineering, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya, 60111, Indonesia
  • Department of Mining Engineering, Faculty of Engineering, Tanjungpura University, Pontianak, 78214, Indonesia
  • Department of Environmental Engineering, Faculty of Civil, Planning, and Geo-Engineering, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya, 60111, Indonesia
  • Department of Civil Engineering, Faculty of Civil, Planning, and Geo-Engineering, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya, 60111, Indonesia
  • Department of Environmental Engineering, Faculty of Civil, Planning, and Geo-Engineering, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya, 60111, Indonesia
  • Department of Mining Engineering, Faculty of Engineering, Tanjungpura University, Pontianak, 78214, Indonesia
  • Department of Civil Engineering, Faculty of Civil, Planning, and Geo-Engineering, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya, 60111, Indonesia
Bibliografia
  • 1. Agrawal, S., & Dhawan, N. (2021). Evaluation of red mud as a polymetallic source – A review. Minerals Engineering, 171, 107084. https://doi.org/10.1016/j.mineng.2021.107084
  • 2. Al-Jabban, W., Knutsson, S., Laue, J., & Al-Ansari, N. (2017). Stabilization of clayey silt soil using small amounts of Petrit T. Engineering, 9(6), 540–562. https://doi.org/10.4236/eng.2017.96034
  • 3. Al-Sakkari, E. G., O. Abdelmigeed, M., M. Naeem, M., & H. Dhawane, S. (2022). Inorganic wastes as heterogeneous catalysts for biodiesel production. In Waste and Biodiesel 137–163. Elsevier. https://doi.org/10.1016/B978-0-12-823958-2.00010-0
  • 4. Alves, L. (2018). Toxic water seeps from Norwegian mining site in Brazil’s Amazon. https:// riotimesonline.com/brazil-news/rio-politics/toxic-water-seeps-from-norwegian-mining-site-in-brazils-amazon/
  • 5. Amer, A. M. (2013). Hydrometallurgical processing of Egyptian bauxite [PDF]. Physicochemical Problems of Mineral Processing; 49; 431−442; ISSN 2084-4735. https://doi.org/10.5277/PPMP130205
  • 6. Anonymous. (2023). Bauxite waste from PT. Brata Guna Perkasa’s mine is suspected of contaminating the river. Suarajournalist. https://www.suarajournalist-kpk.id/daerah/limbah-bauksit-tambang-ptbrata-guna-perkasa-diduga-mencemari-alur-air-sungai/
  • 7. Anonymous. (2024). Bauxite mining waste is causing problems for the people of Meliau. Kalbarpost. https://kalbarpost.id/ warga-meliau-keluhkan-lumpur-tambang-bauksit/
  • 8. Archambo, M., & Kawatra, S. K. (2021). Red mud: fundamentals and new avenues for utilization. Mineral Processing and Extractive Metallurgy Review, 42(7), 427–450. https://doi.org/10.1080/08827508 .2020.1781109
  • 9. ASTM D698. (2021). Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-lbf/ft3 (600 kN-m/m3)). ASTM International. https://doi.org/10.1520/D0698-12R21
  • 10. ASTM D854-58. (2002). Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer. ASTM International.
  • 11. ASTM D1140-14. (2006). Standard Test Methods for Determining the Amount of Material Finer than 75-μm (No. 200) Sieve in Soils by Washing. ASTM International.
  • 12. ASTM D2435. (2011). Test Methods for One-Dimensional Consolidation Properties of Soils Using Incremental Loading. ASTM International. https://doi.org/10.1520/D2435_D2435M-11R20
  • 13. ASTM D4318-17. (2018). Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. ASTM International. https://doi.org/10.1520/ D4318-17E01
  • 14. ASTM D6913-04. (2009). Standard Test Methods for Particle-Size Distribution of Soils Using Sieve Analysis. ASTM International.
  • 15. ASTM D7928-16. (2016). Standard Test Method for Particle-Size Distribution (Gradation) of Fine- Grained Soils Using the Sedimentation (Hydrometer) Analysis. ASTM International. https://doi.org/10.1520/D7928-16
  • 16. Balomenos, E., Davris, P., Pontikes, Y., Panias, D., & Delipaltas, A. (2018). Bauxite Residue Handling Practice and Valorisation Research in Aluminium of Greece. 29–38. https://doi.org/10.5281/ zenodo.3587845
  • 17. Benson, C. H., & Othman, M. A. (1993). Hydraulic And mechanical characteristics of a compacted municipal solid waste compost. Waste Management & Research, 11(2), 127–142. https://doi.org/10.1006/ wmre.1993.1014
  • 18. Bessaim, M. M., Bessaim, A., Missoum, H., & Bendani, K. (2018). Effect of quick lime on physicochemical properties of clay soil. MATEC Web of Conferences, 149, 02065. https://doi.org/10.1051/ matecconf/201814902065
  • 19. Carneiro, J., Tobaldi, D. M., Hajjaji, W., Capela, M. N., Novais, R. M., Seabra, M. P., & Labrincha, J. A. (2018). Red mud as a substitute coloring agent for the hematite pigment. Ceramics International, 44(4), 4211–4219. https://doi.org/10.1016/j.ceramint.2017.11.225
  • 20. Chaiyasat, S. (2019). Permeability of soil cement admixed with air foam. IOP Conference Series: Materials Science and Engineering, 652(1), 012022. https://doi.org/10.1088/1757-899X/652/1/012022
  • 21. Chen, S., Jiang, J., Ou, X., & Tan, Z. (2023). Analysis of the synergistic effect on the strength characteristics of modified red mud-based stabilized soil. Materials, 16(18), 6104. https://doi.org/10.3390/ma16186104
  • 22. Chen, S., Razaqpur, A. G., & Wang, T. (2023). Effects of a red mud mineralogical composition versus calcination on its pozzolanicity. Construction and Building Materials, 404, 133238. https://doi.org/10.1016/j.conbuildmat.2023.133238
  • 23. Chen, X., Guo, Y., Ding, S., Zhang, H., Xia, F., Wang, J., & Zhou, M. (2019). Utilization of red mud in geopolymer-based pervious concrete with function of adsorption of heavy metal ions. Journal of Cleaner Production, 207, 789–800. https://doi.org/10.1016/j.jclepro.2018.09.263
  • 24. Cheng, Y.-Y., Gao, X.-G., Liu, T.-H., Li, L.-X., Du, W., Hamad, A., & Wang, J.-P. (2022). Effect of water content on strength of alluvial silt in the lower Yellow River. Water, 14(20), 3231. https:// doi.org/10.3390/w14203231
  • 25. Daniel, D. E. (Ed.). (1993). Geotechnical Practice for Waste Disposal. Springer US. https://doi.org/10.1007/978-1-4615-3070-1
  • 26. Deelwal, K., Dharavath, K., & Kulshreshtha, M. (2014). Evalation of Characteristic properties of red mud for possible use as a geotechnical material in civil construction. International Journal of Advances in Engineering & Technology, 7(3), 1053–1059.
  • 27. Dewi, R., Agusnar, H., Alfian, Z., & Tamrin. (2018). Characterization of technical kaolin using XRF, SEM, XRD, FTIR and its potentials as industrial raw materials. Journal of Physics: Conference Series, 1116, 042010. https://doi.org/10.1088/1742-6596/1116/4/042010
  • 28. Dewi, R., Agusnar, H., Alfian, Z., & Tamrin. (2020). Physicochemical characterization of natural kaolin from Jaboi Indonesia. Rasayan Journal of Chemistry, 13(01), 382–388. https://doi.org/10.31788/ RJC.2020.1315523
  • 29. Díaz, B., Freire, L., Nóvoa, X. R., & Pérez, M. C. (2015). Chloride and CO2 transport in cement paste containing red mud. Cement and Concrete Composites, 62, 178–186. https://doi.org/10.1016/j. cemconcomp.2015.02.011
  • 30. Du, C., Lu, X., & Yi, F. (2024). Impact of modifiers on soil–water characteristics of graphite tailings. Scientific Reports, 14(1), 4186. https://doi.org/10.1038/s41598-024-52826-6
  • 31. Du, Y., Dai, M., Cao, J., & Peng, C. (2019). Fabrication of a low-cost adsorbent supported zero-valent iron by using red mud for removing Pb( ii ) and Cr( vi ) from aqueous solutions. RSC Advances, 9(57), 33486–33496. https://doi.org/10.1039/C9RA06978J
  • 32. Du, Z., Zhang, Z., Wang, L., Zhang, J., & Li, Y. (2023). Effect of moisture content on the permanent strain of yellow river alluvial silt under long-term cyclic loading. Sustainability, 15(17), 13155. https://doi.org/10.3390/su151713155
  • 33. Dubovikov, О. А., & Jaskelainen, E. E. (2016). Processing of low-quality bauxite feedstock bythermochemistry-bayer method. Journal of Mining Institute, 221, 668–674. https://doi.org/10.18454/PMI.2016.5.668
  • 34. Duchesne, J., & Doye, I. (2005). Effectiveness of covers and liners made of red mud bauxite and/or cement kiln dust for limiting acid mine drainage. Journal of Environmental Engineering, 131(8), 1230–1235. https://doi.org/10.1061/(ASCE)0733-9372(2005)131:8(1230)
  • 35. El-Shamy, A. M., Shehata, M. F., & Ismail, A. I. M. (2015). Effect of moisture contents of bentonitic clay on the corrosion behavior of steel pipelines. Applied Clay Science, 114, 461–466. https://doi.org/10.1016/j.clay.2015.06.041
  • 36. Emmanuel, E., Anggraini, V., Raghunandan, M. E., & Asadi, A. (2020). Utilization of marine clay as a bottom liner material in engineered landfills. Journal of Environmental Chemical Engineering, 8(4), 104048. https://doi.org/10.1016/j.jece.2020.104048
  • 37. Evans, K. (2016). The History, Challenges, and New Developments in the Management and Use of Bauxite Residue. Journal of Sustainable Metallurgy, 2(4), 316–331. https://doi.org/10.1007/s40831-016-0060-x
  • 38. Fan, J., Yan, J., Zhou, M., Xu, Y., Lu, Y., Duan, P., Zhu, Y., Zhang, Z., Li, W., Wang, A., & Sun, D. (2023). Heavy metals immobilization of ternary geopolymer based on nickel slag, lithium slag and metakaolin. Journal of Hazardous Materials, 453, 131380. https://doi.org/10.1016/j.jhazmat.2023.131380
  • 39. Foss, J. E., & Segovia, A. V. (2020). Rates of soil formation. In R. G. LaFleur (Ed.), Groundwater as a Geomorphic Agent (1st ed., 1–17). Routledge. https://doi.org/10.4324/9781003028833-1
  • 40. Gertsen, A. (2024, January 17). Alumunium Production. https://www.aluminiumleader.com/ production/how_aluminium_is_produced/
  • 41. Government of the Republic of Indonesia. (2021). Government Regulation No. 22 of 2021 concerning Environmental Protection and Management (22).
  • 42. Gray, N., Lumsdon, D. G., & Hillier, S. (2016). Effect of pH on the cation exchange capacity of some halloysite nanotubes. Clay Minerals, 51(3), 373– 383. https://doi.org/10.1180/claymin.2016.051.3.04
  • 43. Gruiz, K., Feigl, V., Klebercz, O., Anton, A., & Vaszita, E. (2012). Environmental risk assessment of red mud contaminated land in Hungary. GeoCongress 2012, 4156–4165. https://doi.org/10.1061/9780784412121.427
  • 44. Hamdi, N., & Srasra, E. (2013). Hydraulic conductivity study of compacted clay soils used as landfill liners for an acidic waste. Waste Management, 33(1), 60–66. https://doi.org/10.1016/j. wasman.2012.08.012
  • 45. Hanumantha, R., & Gangadhara Reddy, N. (2017). Zeta Potential and Particle Size Characteristics of Red Mud Waste. In G.L. Sivakumar, K. R. Reddy, A. De, & M. Datta (Eds.), Geoenvironmental Practices and Sustainability (pp. 69–89). Springer Singapore. https://doi.org/10.1007/978-981-10-4077-1_8
  • 46. Hou, D., Wu, D., Wang, X., Gao, S., Yu, R., Li, M., Wang, P., & Wang, Y. (2021). Sustainable use of red mud in ultra-high performance concrete (UHPC): Design and performance evaluation. Cement and Concrete Composites, 115, 103862. https://doi.org/10.1016/j.cemconcomp.2020.103862
  • 47. Hu, Y., Liang, S., Yang, J., Chen, Y., Ye, N., Ke, Y., Tao, S., Xiao, K., Hu, J., Hou, H., Fan, W., Zhu, S., Zhang, Y., & Xiao, B. (2019). Role of Fe species in geopolymer synthesized from alkali-thermal pretreated Fe-rich Bayer red mud. Construction and Building Materials, 200, 398–407. https://doi.org/10.1016/j.conbuildmat.2018.12.122
  • 48. Hua, Y., Heal, K. V., & Friesl-Hanl, W. (2017). The use of red mud as an immobiliser for metal/ metalloid-contaminated soil: A review. Journal of Hazardous Materials, 325, 17–30. https://doi.org/10.1016/j.jhazmat.2016.11.073
  • 49. IAI. (2015). Bauxite Residue Management: Best Practice. International Aluminium Institute.
  • 50. IEPA. (2024). Waste management Open Dumping. https://epa.illinois.gov/topics/waste-management/ illegal-dumping/open-dumping.html
  • 51. Intrakamhaeng, V., Clavier, K. A., & Townsend, T. G. (2020). Hazardous waste characterization implications of updating the toxicity characteristic list. Journal of Hazardous Materials, 383, 121171. https://doi.org/10.1016/j.jhazmat.2019.121171
  • 52. John, N., Fathima, P. S., Harsha, V. S., Paul, N. M., & Nisha, P. (2023). Physical Conversion of Biomass: Dewatering, Drying, Size Reduction, Densification, and Separation. In S. Thomas, M. Hosur, D. Pasquini, & C. Jose Chirayil (Eds.), Handbook of Biomass (pp. 1–28). Springer Nature Singapore. https://doi.org/10.1007/978-981-19-6772-6_37-1
  • 53. Kara, İ., Yilmazer, D., & Akar, S. T. (2017). Metakaolin based geopolymer as an effective adsorbent for adsorption of zinc(II) and nickel(II) ions from aqueous solutions. Applied Clay Science, 139, 54–63. https://doi.org/10.1016/j.clay.2017.01.008
  • 54. Kaya, K., & Soyer-Uzun, S. (2016). Evolution of structural characteristics and compressive strength in red mud–metakaolin based geopolymer systems. Ceramics International, 42(6), 7406–7413. https:// doi.org/10.1016/j.ceramint.2016.01.144
  • 55. Khaerunisa, H., Setiawan, W. A., Damayanti, R., Surono, W., Astika, H., & Lutfi, M. (2015). Processing and Utilization of Bauxite Residue (Red Mud) for Peat Amendment and Acid Mine Drainage Neutralization. Puslitbang Teknologi Mineral dan Batubara.
  • 56. KLHK. (2021). Performance Report of the Directorate General of Waste Management 2021. Directorate General of Waste Management, Toxic Waste and Hazardous Materials, Ministry of Environment and Forestry. https://drive.google.com/file/d/1qcfgt VnWNH7j7TepIkIr3lsoLujSI44Z/view
  • 57. Kumar, A., & Lingfa, P. (2020). Sodium bentonite and kaolin clays: Comparative study on their FT-IR, XRF, and XRD. Materials Today: Proceedings, 22, 737–742. https://doi.org/10.1016/j. matpr.2019.10.037
  • 58. Kumar, S. N., Sinha, A. K., & Madan, S. K. (2023). Characterisation of stabilised red mud waste material for road infrastructure. Materials Today: Proceedings, 93, 41–46. https://doi.org/10.1016/j. matpr.2023.06.229
  • 59. Kurniasari, O., Damanhuri, E., Padmi, T., & Kardena, E. (2014). Lanfill Cover Soil Uses Old Waste as a Methane Oxide Media to Reduce Methane Gas Emissions. Bumi Lestari, 14(1), 46–52.
  • 60. Lakshmikantha, H., & Sivapullaiah, P. V. (2006). Relative performance of lime stabilized amended clay liners in different pore fluids. Geotechnical and Geological Engineering, 24(5), 1425–1448. https://doi.org/10.1007/s10706-005-0886-7
  • 61. Li, C., Nie, B., Feng, Z., Wang, Q., Yao, H., & Cheng, C. (2022). Experimental Study of the Influence of Moisture Content on the Pore Structure and Permeability of Anthracite Treated by Liquid Nitrogen Freeze–Thaw. ACS Omega, 7(9), 7777–7790. https://doi.org/10.1021/acsomega.1c06631
  • 62. Li, X.-F., Zhang, T.-A., Lv, G.-Z., Wang, K., & Wang, S. (2023). Summary of Research Progress on Metallurgical Utilization Technology of Red Mud. Minerals, 13(6), 737. https://doi.org/10.3390/ min13060737
  • 63. Lima, M. S. S., Thives, L. P., Haritonovs, V., & Bajars, K. (2017). Red mud application in construction industry: Review of benefits and possibilities. IOP Conference Series: Materials Science and Engineering, 251, 012033. https://doi.org/10.1088/1757-899X/251/1/012033
  • 64. Lingxiang, H., Chunlei, L., Haibin, W., Xingxing, L., Yongrong, Q., & Xuechen, Z. (2021). Research Progress on Comprehensive Utilization of Red Mud. Journal of Physics: Conference Series, 2009(1), 012021. https://doi.org/10.1088/1742-6596/2009/1/012021
  • 65. Liu, W., Chen, X., Li, W., Yu, Y., & Yan, K. (2014). Environmental assessment, management and utilization of red mud in China. Journal of Cleaner Production, 84, 606–610. https://doi.org/10.1016/j. jclepro.2014.06.080
  • 66. Liu, Y., Lin, C., & Wu, Y. (2007). Characterization of red mud derived from a combined Bayer Process and bauxite calcination method. Journal of Hazardous Materials, 146(1–2), 255–261. https:// doi.org/10.1016/j.jhazmat.2006.12.015
  • 67. Liu, Y., Zhuge, Y., Chen, X., Duan, W., Fan, R., Outhred, L., & Wang, L. (2023). Micro-chemomechanical properties of red mud binder and its effect on concrete. Composites Part B: Engineering, 258, 110688. https://doi.org/10.1016/j.compositesb.2023.110688
  • 68. Lockwood, C. L., Mortimer, R. J. G., Stewart, D. I., Mayes, W. M., Peacock, C. L., Polya, D. A., Lythgoe, P. R., Lehoux, A. P., Gruiz, K., & Burke, I. T. (2014). Mobilisation of arsenic from bauxite residue (red mud) affected soils: Effect of pH and redox conditions. Applied Geochemistry, 51, 268–277. https://doi.org/10.1016/j.apgeochem.2014.10.00
  • 69. López-García, M., Martínez-Cabanas, M., Vilariño, T., Lodeiro, P., Rodríguez-Barro, P., Herrero, R., & Barriada, J. L. (2017). New polymeric/inorganic hybrid sorbents based on red mud and nanosized magnetite for large scale applications in As(V) removal. Chemical Engineering Journal, 311, 117– 125. https://doi.org/10.1016/j.cej.2016.11.081
  • 70. Lu, C., Li, L., Xu, J., Zhao, H., & Chen, M. (2024). Research on the Critical Value of Sand Permeability Particle Size and Its Permeability Law after Mixing. Water, 16(3), 393. https://doi.org/10.3390/w16030393
  • 71. Lu, G., Zhang, T., Zheng, C., Zhu, X., Zhang, W., & Wang, Y. (2017). The influence of the silicon saturation coefficient on a calcification-carbonation method for clean and efficient use of bauxite. Hydrometallurgy, 174, 97–104. https://doi.org/10.1016/j.hydromet.2017.07.001
  • 72. Lyu, F., Hu, Y., Wang, L., & Sun, W. (2021). Dealkalization processes of bauxite residue: A comprehensive review. Journal of Hazardous Materials, 403, 123671. https://doi.org/10.1016/j. jhazmat.2020.123671
  • 73. Ma, S., Yao, Y., Bao, P., & Guo, C. (2023). Effects of moisture content on strength and compression properties of foundation soils of cultural relics in areas flooded by the Yellow River. Frontiers in Materials, 10, 1186750. https://doi.org/10.3389/ fmats.2023.1186750
  • 74. Maihatchi, A. A., Pons, M.-N., Ricoux, Q., Goettmann, F., & Lapicque, F. (2020). Production of electrolytic iron from red mud in alkaline media. Journal of Environmental Management, 266, 110547. https://doi.org/10.1016/j.jenvman.2020.110547
  • 75. Manfroi, E. P., Cheriaf, M., & Rocha, J. C. (2014). Microstructure, mineralogy and environmental evaluation of cementitious composites produced with red mud waste. Construction and Building Materials, 67, 29–36. https://doi.org/10.1016/j. conbuildmat.2013.10.031
  • 76. Maritsa, L., Tsakiridis, P. E., Katsiotis, N. S., Tsiavos, H., Velissariou, D., Xenidis, A., & Beazi- Katsioti, M. (2016). Utilization of spilitic mining wastes in the construction of landfill bottom liners. Journal of Environmental Chemical Engineering, 4(2), 1818–1825. https://doi.org/10.1016/j. jece.2016.03.011
  • 77. Marschalko, M., Zięba, Z., Niemiec, D., Neuman, D., Mońka, J., & Dąbrowska, J. (2021). Suitability of engineering-geological environment on the basis of its permeability coefficient: four case studies of fine-grained soils. Materials, 14(21), 6411. https://doi.org/10.3390/ma14216411
  • 78. Mayes, W. M., Jarvis, A. P., Burke, I. T., Walton, M., Feigl, V., Klebercz, O., & Gruiz, K. (2011). Dispersal and attenuation of trace contaminants downstream of the ajka bauxite residue (red mud) depository failure, Hungary. Environmental Science & Technology, 45(12), 5147–5155. https://doi.org/10.1021/es200850y
  • 79. Ministry of EMR. (2016). The Impact of Bauxite Downstreaming on the Regional Economy of West Kalimantan Province. Center for Data and Information Technology, Ministry of Energy and Mineral Resources.
  • 80. Ministry of Health of the Republic of Indonesia. (2023). Regulation No. 2 of 2023 concerning the Implementation of Government Regulation No. 66 of 2014 on Environmental Health (2).
  • 81. Momeni, M., Bayat, M., & Ajalloeian, R. (2022). Laboratory investigation on the effects of pH-induced changes on geotechnical characteristics of clay soil. Geomechanics and Geoengineering, 17(1), 188–196. https://doi.org/10.1080/17486025 .2020.1716084
  • 82. Montelli, A., Gulick, S. P. S., Worthington, L. L., Mix, A., Davies-Walczak, M., Zellers, S. D., & Jaeger, J. M. (2017). Late Quaternary glacial dynamics and sedimentation variability in the Bering Trough, Gulf of Alaska. Geology, 45(3), 251–254. https://doi.org/10.1130/G38836.1
  • 83. Muhmed, A., Mohamed, M., & Khan, A. (2022). The Impact of Moisture and Clay Content on the Unconfined Compressive Strength of Lime Treated Highly Reactive Clays. Geotechnical and Geological Engineering, 40(12), 5869–5893. https://doi.org/10.1007/s10706-022-02255-x
  • 84. Mukiza, E., Zhang, L., Liu, X., & Zhang, N. (2019). Utilization of red mud in road base and subgrade materials: A review. Resources, Conservation and Recycling, 141, 187–199. https://doi.org/10.1016/j. resconrec.2018.10.031
  • 85. Nath, H., Kabir, M. H., Kafy, A.-A., Rahaman, Z. A., & Rahman, M. T. (2023). Geotechnical properties and applicability of bentonite-modified local soil as landfill and environmental sustainability liners. Environmental and Sustainability Indicators, 18, 100241. https://doi.org/10.1016/j.indic.2023.100241
  • 86. Nikbin, I. M., Aliaghazadeh, M., Sh Charkhtab, & Fathollahpour, A. (2018). Environmental impacts and mechanical properties of lightweight concrete containing bauxite residue (red mud). Journal of Cleaner Production, 172, 2683–2694. https://doi.org/10.1016/j.jclepro.2017.11.143
  • 87. Onyelowe, K. C., Naghizadeh, A., Aneke, F. I., Kontoni, D.-P. N., Onyia, M. E., Welman-Purchase, M., Ebid, A. M., Adah, E. I., & Stephen, L. U. (2023). Characterization of net-zero pozzolanic potential of thermally-derived metakaolin samples for sustainable carbon neutrality construction. Scientific Reports, 13(1), 18901. https://doi.org/10.1038/ s41598-023-46362-y
  • 88. Panda, I., Jain, S., Das, S. K., & Jayabalan, R. (2017). Characterization of red mud as a structural fill and embankment material using bioremediation. International Biodeterioration & Biodegradation, 119, 368–376. https://doi.org/10.1016/j. ibiod.2016.11.026
  • 89. Pepper, R. A., Couperthwaite, S. J., & Millar, G. J. (2018). Re-use of waste red mud: Production of a functional iron oxide adsorbent for removal of phosphorous. Journal of Water Process Engineering, 25, 138–148. https://doi.org/10.1016/j. jwpe.2018.07.006
  • 90. Power, G., Gräfe, M., & Klauber, C. (2011). Bauxite residue issues: I. Current management, disposal and storage practices. Hydrometallurgy, 108(1–2), 33– 45. https://doi.org/10.1016/j.hydromet.2011.02.006
  • 91. Purbasari, A., & Samadhi, T. W. (2021). Kajian Dehidroksilasi Termal Kaolin menjadi Metakaolin menggunakan Analisis Termogravimetri. ALCHEMY Jurnal Penelitian Kimia, 17(1), 105. https://doi.org/10.20961/alchemy.17.1.47337.105-112
  • 92. Ramdhani, E. P., Yulita, I., Edelwis, T. W., Permana, D., Kadir, L. A., Wahab, W., Pardi, H., Siregar, N., Santoso, E., & Prasetyoko, D. (2023). Characterisation of bauxite cleaning waste in Tanjungpinang Indonesia. IOP Conference Series: Earth and Environmental Science, 1148(1), 012001. https://doi.org/10.1088/1755-1315/1148/1/012001
  • 93. Rowe, R. K. (2005). Long-term performance of contaminant barrier systems. Géotechnique, 55(9), 631– 678. https://doi.org/10.1680/geot.2005.55.9.631
  • 94. Rubinos, D. A., & Barral, M. T. (2013). Fractionation and mobility of metals in bauxite red mud. Environmental Science and Pollution Research, 20(11), 7787– 7802. https://doi.org/10.1007/s11356-013-1477-4
  • 95. Rubinos, D. A., & Spagnoli, G. (2018). Utilization of waste products as alternative landfill liner and cover materials – A critical review. Critical Reviews in Environmental Science and Technology, 48(4), 376–438. https://doi.org/10.1080/10643389.2018.1461495
  • 96. Rubinos, D., Spagnoli, G., & Barral, M. T. (2015). Assessment of bauxite refining residue (red mud) as a liner for waste disposal facilities. International Journal of Mining, Reclamation and Environment, 29(6), 433–452. https://doi.org/10.1080/17480930 .2013.830906
  • 97. Salih, Wdah. T., Yu, W., Dong, X., & Hao, W. (2020). Study on stress-strain-resistivity and microscopic mechanism of red mud waste modified by desulphurization gypsum-fly ash under drying-wetting cycles. Construction and Building Materials, 249, 118772. https://doi.org/10.1016/j.conbuildmat.2020.118772
  • 98. Salim, M. U., Mosaberpanah, M. A., Danish, A., Ahmad, N., Khalid, R. A., & Moro, C. (2023). Role of bauxite residue as a binding material and its effect on engineering properties of cementitious Composites: A review. Construction and Building Materials, 409, 133844. https://doi.org/10.1016/j. conbuildmat.2023.133844
  • 99. Samal, S. (2021). Utilization of Red Mud as a Source for Metal Ions—A Review. Materials, 14(9), 2211. https://doi.org/10.3390/ma14092211
  • 100. Santi, M. (2018). Netralisasi Air Lindi Residu Bauksit (Red Mud) dengan Menggunakan Air Gambut. Jurnal Ilmiah Teknosains, 4(2), 76–79. https://doi.org/10.26877/jitek.v4i2.3109
  • 101. Saukani, M., Sholehah, I., Arief, S., & Husein, S. (2020). Characterization of Thermal Stability of Kaolin Clay from South Kalimantan Substrate. Jurnal Fisika Dan Aplikasinya, 16(1), 29. https://doi.org/10.12962/j24604682.v16i1.4756
  • 102. Shi, W., Ren, H., Huang, X., Li, M., Tang, Y., & Guo, F. (2020). Low cost red mud modified graphitic carbon nitride for the removal of organic pollutants in wastewater by the synergistic effect of adsorption and photocatalysis. Separation and Purification Technology, 237, 116477. https://doi.org/10.1016/j.seppur.2019.116477
  • 103. Shin, W.-S., Kang, K., & Kim, Y.-K. (2014). Adsorption Characteristics of Multi-Metal Ions by Red Mud, Zeolite, Limestone, and Oyster Shell. Environmental Engineering Research, 19(1), 15– 22. https://doi.org/10.4491/eer.2014.19.1.015
  • 104. Shu, S., Zhu, W., & Shi, J. (2019). A new simplified method to calculate breakthrough time of municipal solid waste landfill liners. Journal of Cleaner Production, 219, 649–654. https://doi.org/10.1016/j.jclepro.2019.02.050
  • 105. Silva, S. H. G., Hartemink, A. E., Teixeira, A. F. D. S., Inda, A. V., Guilherme, L. R. G., & Curi, N. (2018). Soil weathering analysis using a portable X-ray fluorescence (PXRF) spectrometer in an Inceptisol from the Brazilian Cerrado. Applied Clay Science, 162, 27–37. https://doi.org/10.1016/j. clay.2018.05.028
  • 106. Simon, A., Wilhelmy, M., Klosterhuber, R., Cocuzza, E., Geitner, C., & Katzensteiner, K. (2021). A system for classifying subsolum geological substrates as a basis for describing soil formation. CATENA, 198, 105026. https://doi.org/10.1016/j.catena.2020.105026
  • 107. Skempton, A. W. (1953). The colloidal activity of clay, Proceedings of the Third International Conference on Soil Mechanics and Foundation Engineering. I, 57–61.
  • 108. Stenchly, K., Dao, J., Lompo, D. J.-P., & Buerkert, A. (2017). Effects of waste water irrigation on soil properties and soil fauna of spinach fields in a West African urban vegetable production system. Environmental Pollution, 222, 58–63. https://doi.org/10.1016/j.envpol.2017.01.006
  • 109. Sun, H., Chen, C., Ling, L., Memon, S. A., Ding, Z., Li, W., Tang, L., & Xing, F. (2019). Synthesis and Properties of Red Mud-Based Nanoferrite Clinker. Journal of Nanomaterials, 2019, 1–12. https://doi.org/10.1155/2019/3617050
  • 110. Surbakti, R. (2021). Analisis Penurunan Tanah dengan Plaxis 2D dan 3D Pada Proyek Reklamasi Belawan. Syntax Literate ; Jurnal Ilmiah Indonesia, 6(7), 3511. https://doi.org/10.36418/syntax-literate.v6i7.1532
  • 111. Tabereaux, A. T., & Peterson, R. D. (2014). Aluminum Production. In Treatise on Process Metallurgy (pp. 839–917). Elsevier. https://doi.org/10.1016/ B978-0-08-096988-6.00023-7
  • 112. USEPA. (1992a). SW-846 Method 1311: Tocitity Characteristic Leaching Procedure. United States Enviromental Protection Agency. https:// www.epa.gov/hw-sw846/sw-846-test-method- 1311-toxicity-characteristic-leaching-procedure
  • 113. USEPA. (1992b). The Environmental Protection Agency’s Municipal Solid Waste Landfill Liner Design Criteria.
  • 114. Viyasun, K., Anuradha, R., Thangapandi, K., Santhosh Kumar, D., Sivakrishna, A., & Gobinath, R. (2021). Investigation on performance of red mud based concrete. Materials Today: Proceedings, 39, 796–799. https://doi.org/10.1016/j.matpr.2020.09.637
  • 115. Waluyo, J., Amal, R. R. I., Yudistira, A. A., Mustofa, H., & Maulana, M. L. (2022). Influence of Fly Ash as a Catalyst on the Pyrolysis Process of Rice Husk Pellets towards Thermal Characteristics and Synthetic Gas (Syngas) Production. ALCHEMY Jurnal Penelitian Kimia, 18(2), 148. https://doi.org/10.20961/alchemy.18.2.55193.148-157
  • 116. Wan, Y., Dong, Z., Cai, Y., Xue, Q., Liu, K., Liu, L., & Guo, D. (2023). Geomembrane leaks detection and leakage correlation factor analysis of composite liner systems for fifty-five (55) solid waste landfills in China. Environmental Technology & Innovation, 32, 103308. https://doi.org/10.1016/j.eti.2023.103308
  • 117. Wang, H., Liu, Z., Xie, Y., & Li, Y. (2024). Study on the Influence of Moisture Content and Void Ratio on the Disintegration of Red Clay. Applied Sciences, 14(9), 3652. https://doi.org/10.3390/app14093652
  • 118. Wang, L., Sun, N., Tang, H., & Sun, W. (2019). A Review on Comprehensive Utilization of Red Mud and Prospect Analysis. Minerals, 9(6), 362. https://doi.org/10.3390/min9060362
  • 119. Wang, P., & Liu, D.-Y. (2012). Physical and Chemical Properties of Sintering Red Mud and Bayer Red Mud and the Implications for Beneficial Utilization. Materials, 5(10), 1800–1810. https://doi.org/10.3390/ma5101800
  • 120. Wang, Q., Ji, C., Sun, J., Yao, Q., Liu, J., Saeed, R. M. Y., & Zhu, Q. (2020). Kinetic thermal behavior of nanocellulose filled polylactic acid filament for fused filament fabrication 3D printing. Journal of Applied Polymer Science, 137(7), 48374. https://doi.org/10.1002/app.48374
  • 121. Wang, S., Jin, H., Deng, Y., & Xiao, Y. (2021). Comprehensive utilization status of red mud in China: A critical review. Journal of Cleaner Production, 289, 125136. https://doi.org/10.1016/j. jclepro.2020.125136
  • 122. Wang, X., Sun, T., Kou, J., Li, Z., & Tian, Y. (2018). Feasibility of co-reduction roasting of a saprolitic laterite ore and waste red mud. International Journal of Minerals, Metallurgy, and Materials, 25(6), 591–597. https://doi.org/10.1007/ s12613-018-1606-7
  • 123. Wang, Y., Zhang, S., Yin, S., Liu, X., & Zhang, X. (2020). Accumulated plastic strain behavior of granite residual soil under cycle loading. International Journal of Geomechanics, 20(11), 04020205. https://doi.org/10.1061/(ASCE) GM.1943-5622.0001850
  • 124. Wibawa, Y. S., Sugiarti, K., & Soebowo, E. (2018). Characteristics and engineering properties of residual soil of volcanic deposits. IOP Conference Series: Earth and Environmental Science, 118, 012041. https://doi.org/10.1088/1755-1315/118/1/012041
  • 125. Winkler, D. (2014). Collembolan response to red mud pollution in Western Hungary. Applied Soil Ecology, 83, 219–229. https://doi.org/10.1016/j.apsoil.2013.07.006
  • 126. Wu, C., & Liu, D. (2012). Mineral Phase and physical properties of red mud calcined at different temperatures. Journal of Nanomaterials, 2012, 1–6. https://doi.org/10.1155/2012/628592
  • 127. Wulandari, P. S., & Tjandra, D. (2019). Analysis of the effect of reservoir water level fluctuations on reservoir slope stability using the 2D plaxis program. MEDIA KOMUNIKASI TEKNIK SIPIL, 24(2), 113. https://doi.org/10.14710/mkts. v24i2.17780
  • 128. Yao, F., Xu, P., Jia, H., Li, X., Yu, H., & Li, X. (2022). Thermogravimetric Analysis on a Resonant Microcantilever. Analytical Chemistry, 94(26), 9380–9388. https://doi.org/10.1021/acs. analchem.2c01374
  • 129. Yeom, C., & Kim, Y. (2017). Adsorption of ammonia using mesoporous alumina prepared by a templating method. Environmental Engineering Research, 22(4), 401–406. https://doi.org/10.4491/ eer.2017.045
  • 130. Zhang, D.-R., Chen, H.-R., Zhao, X.-J., Xia, J.- L., Nie, Z., Zhang, R., Shu, W.-S., & Pakostova, E. (2022). Fe(II) bio-oxidation mediates red mud transformations to form Fe(III)/Al (hydr)oxide adsorbent for efficient As(V) removal under acidic conditions. Chemical Engineering Journal, 439, 135753. https://doi.org/10.1016/j.cej.2022.135753
  • 131. Zhang, H., Cao, T., Sun, X., & Xu, Y. (2021). Temporal and spatial variation characteristics of soil mechanical composition after aeolian soil improvement by soft rock in Mu Us sandy land. Bangladesh Journal of Botany, 865–872. https:// doi.org/10.3329/bjb.v50i5.56438
  • 132. Zhang, J., Liu, S., Yao, Z., Wu, S., Jiang, H., Liang, M., & Qiao, Y. (2018). Environmental aspects and pavement properties of red mud waste as the replacement of mineral filler in asphalt mixture. Construction and Building Materials, 180, 605–613. https://doi.org/10.1016/j.conbuildmat.2018.05.268
  • 133. Zhang, S., Yang, J., Xin, X., Yan, L., Wei, Q., & Du, B. (2015). Adsorptive removal of Cr(VI) from aqueous solution onto different kinds of modified bentonites. Environmental Progress & Sustainable Energy, 34(1), 39–46. https://doi.org/10.1002/ep.11947
  • 134. Zhang, S.-C., Li, K., Sun, K.-M., & Wang, S. (2022). Impact of Initial Moisture Content on the Shrinkage-Swelling Behavior of Heishan Bentonite. KSCE Journal of Civil Engineering, 26(2), 550–555. https://doi.org/10.1007/s12205-021-0060-7
  • 135. Zhang, Y., Qian, W., Zhou, P., Liu, Y., Lei, X., Li, B., & Ning, P. (2021). Research on red mud-limestone modified desulfurization mechanism and engineering application. Separation and Purification Technology, 272, 118867. https://doi.org/10.1016/j.seppur.2021.118867
  • 136. Zhang, Z., Huang, X., Liu, W., & Wang, L. (2020). Study on the Hydraulic Parameters of Woshaxi Landslide Soils during Water Level Drawdown of Three Gorges Reservoir. Geofluids, 2020, 1–14. https://doi.org/10.1155/2020/6283791
  • 137. Zhang, Z., Zhou, D., He, J., He, Y., Yu, C., Long, Y., Shen, D., Yao, J., & Chen, H. (2023). Insight into the impact of industrial waste co-disposal with MSW on groundwater contamination at the open solid waste dumping sites. Chemosphere, 344, 140429. https://doi.org/10.1016/j. chemosphere.2023.140429
  • 138. Zhou, R., Liu, X., Luo, L., Zhou, Y., Wei, J., Chen, A., Tang, L., Wu, H., Deng, Y., Zhang, F., & Wang, Y. (2017). Remediation of Cu, Pb, Zn and Cd-contaminated agricultural soil using a combined red mud and compost amendment. International Biodeterioration & Biodegradation, 118, 73–81. https://doi.org/10.1016/j.ibiod.2017.01.023
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b56f345b-744e-44d7-b7f3-52e4d294c5d3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.