Identyfikatory
Warianty tytułu
Analiza procesu mikrotłoczenia stosowane go do otrzymywania stalowych bipolarnych membran o ekstremalnie małych grubościach
Języki publikacji
Abstrakty
Bipolar plate is one of the key components of proton exchange membrane fuel cells (PEMFC). Since the production costs of traditional graphite bipolar plates are very expensive and need a few millimeters thickness over the space, the resulting metal bipolar plate not only reduces the cost of such a bipolar plate, the thickness can also be reduced to micron range. This study aims to explore the application of micro-stamping technology to produce thin metal bipolar plates with the relevant process parameters. Regarding the use of rigid punch on 50μm-thick stainless steel sheet (SUS 304) for micro-channel stamping process in this study, the channel design is 0.8*0.75mm. Besides, the finite element method and the experimental results are used to analyze the micro-stamping process key parameters. In this study, traditional material model and the scale-factor modified material model are used for simulation. The experimental results verified by the modified material model are more realistic to products and have better similarity, as the punch load is relatively small. The results demonstrate that the use of micro-stamping production of thin metal bipolar plates could not only reduce the production cost, but could also speed up the process. In this paper, using ULF (updated Lagrangian formulation) concept to establish an elastic-plastic deformation finite element analysis model and using scale-factor to modify the calculation could effectively simulate the micro-stamping process for metal bipolar plates.
Dwubiegunowa płyta jest zasadniczym składnikiem baterii PEMFC z membranową wymianą protonową. W artykule zaproponowano zastąpienie tradycyjne płyty grafitowej przez płytę oraz opisano technologię mikro-tłoczenia w celu uzyskania grubości rzędu mikronów.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
121--126
Opis fizyczny
Bibliogr. 18 poz., rys.
Twórcy
autor
- Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung, Taiwan
autor
- Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung, Taiwan
Bibliografia
- [1] Bar-On I., Kirchain R., Roth R., Technical cost analysis for PEM fuel cells, J. Power Sources, 109 (2002), 71-75
- [2] Tawfika H., Hung Y., Mahajan D., Metal bipolar plates for PEM fuel cell - A review, J. Power Sources, 163 (2007), 755-767
- [3] Hermann A., Chaudhuri T., Spagnol P., Bipolar plates for PEM fuel cells: A review, Int. J. of Hydrogen Energy, 30 (2005), 1297-1302
- [4] Li X., Sabir I., Review of bipolar plates in PEM fuel cells: Flowfield designs, Int. J. of Hydrogen Energy, 30 (2005), 359-371
- [5] Koç M., Mahabunphachai S., Feasibility investigations on a novel micro-manufacturing process for fabrication of fuel cell bipolar plates: Internal pressure-assisted embossing of microchannels with in-die mechanical bonding, J. Power Sources, 172 (2007), No. 2, 725-733
- [6] Wang S., Peng J., Lui W., Zhang J., Performance of the goldplated titanium bipolar plates for the light weight PEM fuel cells, J. Power Sources, 162 (2006), 486-491
- [7] Mahabunphachai S., Koç M., Fabrication of micro-channel arrays on thin metallic sheet using internal fluid pressure: Investigations on size effects and development of design guidelines, J. Power Sources, 175 (2008), No. 1, 363-371
- [8] Lipman T. E., Edwards J. L., Kammen, D. M., Fuel cell system economics: comparing the costs of generating power with stationary and motor vehicle PEM fuel cell systems, Energy Policy, 32 (2004), 101-125
- [9] Matsuura T., Kato M., Hori M., Study on metallic bipolar plate for proton exchange membrane fuel cell, J. Power Sources, 161 (2006), 74-78
- [10] Peng L., Hu P., Lai X., Mei D., Ni J., Investigation of micro/meso sheet soft punch stamping process - simulation and experiments, Materials and Design, 30 (2009), 783-790
- [11] McMeeking R. M., Rice J. R., Finite element formulations for problems of large elastic-plastic deformation, Int. J. Solids Structures, 11 (1975), 601-606
- [12] Hinton E., Owen, D. R., Finite Element Software for Plates and Shell, Pineridge, Swansea, UK (1984)
- [13] Hughes T. J. R., The Finite Element Method, Prentice-Hall, Englewood Cliffs, NJ (1987)
- [14] Hughes T. J. R., Generalization of Selective Integration Procedures to Anisotropic and Nonlinear Media, Int. J. Numerical Methods in Engineering, 15 (1980), 1413-1418
- [15] Peng L., Liu F., Ni J., Lai X., Size effects in thin sheet metal forming and its elastic-plastic constitutive model, Material and design, 28 (2007), 1731-1736
- [16] Oden J. T., Pries E. B., Nonlocal and nonlinear friction law and variational principles for contact problems in elasticity, J. Applied Mechanics, 50 (1983), 67-76
- [17] Saran M. J., Wagoner R. H., A consistent implicit formulation for nonlinear finite element modeling with contact and friction: part I—theory, Trans. ASME, Journal of Applied Mechanics, 58 (1991), 499-506
- [18] Yamada Y., Yoshimura N., Sakurai T., Plastic Stress Strain Matrix and its Application for the Solution of Elastic-plastic Problems by the Finite Element Method, Int. J. Mech. Sci., 10 (1968), 343-354
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b5680076-2298-46e6-978c-f7490b5c7746