PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis and optimization of the demagnetization performance of permanent magnets of the hybrid excitation starter generator

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The hybrid excitation starter generator (HESG) of range-extended electric vehicles is at risk of permanent magnet (PM) demagnetization under overload conditions. Therefore, this paper analyzes the operating process of PMs and the impact of armature reaction fields on PM operating points and demagnetization under various operating conditions. The variation patterns of average flux density operating points and minimum flux density values in the HESG under different load conditions are derived. The demagnetization points of each PM and their contributing factors are determined. Furthermore, the parameters of the magnetic isolation air gap between the PMs are optimized while considering leakage flux and demagnetization at the ends of the PMs. The simulation analysis and prototype test results show that a reasonable design and optimization of the ends of PMs can effectively enhance the demagnetization resistance of PMs and improve the output performance of HESG.
Rocznik
Strony
673--692
Opis fizyczny
Bibliogr. 35 poz., fot., rys., tab., wykr., wz.
Twórcy
autor
  • Automotive Engineering College, Zibo Vocational Institute, No. 506, Lian Tong Road, Zhoucun District, Zibo, Shandong Province, China
Bibliografia
  • [1] Qin S. F., Xiong Y. Q., Innovation strategies of Chinese new energy vehicle enterprises under the influence of non-financial policies: Effects, mechanisms and implications regulation, Energy Policy, vol. 164, pp. 1–13 (2022), DOI: 10.1016/J.ENPOL.2022.112946.
  • [2] Shannon N., Preparing for the electric vehicle revolution, Transmission & Distribution World, vol. 74, no. 5, pp. 56–57 (2022).
  • [3] Guo J. Y., Yang J., Zhang Q. L., Wang J., Li F. Y., Robust adaptive tracking control for range-extended electric vehicles, 2020 39th Chinese Control Conference (CCC), Shenyang, China, pp. 5572–5576 (2020).
  • [4] Li Y., Zhao C., Huang Y., Wang X., Guo F., Yang L., Study on regenerative braking control strategy for extended range electric vehicles, 2020 IEEE Vehicle Power and Propulsion Conference (VPPC), Gijon, Spain, pp. 1–6 (2020).
  • [5] Cipek M., Kasac J., Pavkovic D., Zorc D., A novel cascade approach to control variables optimisation for advanced series-parallel hybrid electric vehicle power-train, Applied Energy, vol. 276, pp. 1–12 (2020), DOI: 10.1016/j.apenergy.2020.115488.
  • [6] Gu X. P., Zhang Z. R., Sun L. N., Yu L., Magnetic field enhancement characteristic of an axially-parallel hybrid excitation DC generator, IEEE Transactions on Magnetics, vol. 57, no. 2, pp. 1–5 (2020), DOI: 10.1109/tmag.2020.3012148.
  • [7] Hou J. I., Geng W. W., Li Q., Zhang Z. R., 3-D equivalent magnetic network modeling and FEA verification of a novel axial-flux hybrid-excitation in-wheel motor, IEEE Transactions on Magnetics, vol. 57, no. 7, pp. 1–12 (2021), DOI: 10.1109/TMAG.2021.3081830.
  • [8] Woo H. M., Lee D. H., Characteristic analysis of parallel-rotor hybrid generator based on exciter types, Journal of Power Electronics, vol. 20, no. 3, pp. 774–783 (2020), DOI: 10.1007/s43236-020-00068-w.
  • [9] Cui G., Xiong B., Huang K. J., Li Z. G., Ruan L., Spatial distribution characteristics and influencing factors of demagnetization of permanent magnet motor for electric vehicle, Transactions of China Electrotechnical Society (in Chinese), vol. 38, no. 22, pp. 5959–5974 (2023), DOI: 10.19595/j.cnki.1000- 6753.tces.230533.
  • [10] Xie Y., Jiang J. N., Cai W., Ren S. Q., Sun C. J., Demagnetization failure of surface mount high speed permanent magnet synchronous motor and local infiltration of heavy rare earth, Electric Machines and Control (in Chinese), vol. 28, no. 2, pp. 44–53 (2024), DOI: 10.15938/j.emc.2024.02.005.
  • [11] Zhang D., Zhao J. W., Dong F., Song J. C., Dou S. K., Wang H., Xie F., Partial demagnetization fault diagnosis research of permanent magnet synchronous motors based on the PNN algorithm, Proceedings of the CSEE (in Chinese), vol. 39, no. 1, pp. 296–306+344 (2019), DOI: 10.13334/j.0258- 8013.pcsee.172531.
  • [12] Abbaszadeh K., Alam F. R., On-load field component separation in surface-mounted permanent-magnet motors using an improved conformal mapping method, IEEE Transactions on Magnetics, vol. 52, no. 2, pp. 1–12 (2016), DOI: 10.1109/tmag.2015.2493150.
  • [13] Baranski M., Szelag W., Lyskawinski W., Analysis of the partial demagnetization process of magnets in a line start permanent magnet synchronous motor, Energies, vol. 13, no. 21, pp. 1–20 (2020), DOI: 10.3390/en13215562.
  • [14] Jung J.W., Lee B.H., Kim K.S., Kim K.I., Interior permanent magnet synchronous motor design for eddy current loss reduction in permanent magnets to prevent irreversible demagnetization, Energies, vol. 13, no. 19, pp. 1–15 (2020), DOI: 10.3390/en13195082.
  • [15] Farshid Mahmouditabar, Abolfazl Vahedi, Noureddine Takorabet, Design and analysis of interior permanent magnet motor for electric vehicle application considering irreversible demagnetization, IEEE Transactions on Industry Applications, vol. 58, no. 1, pp. 284–293 (2022), DOI: 10.1109/ICEM49940.2020.9271060.
  • [16] Wang X.G., Zhou C., Li X.H., Zhao M., Hu Z.X., Research on rotor of hybrid permanent magnet synchronous motor for hybrid electric vehicle integrated starter generator, Electric Machines & Control Application (in Chinese), vol. 46, no. 5, pp. 107–112 (2019).
  • [17] Sun Y. L., Liu Y., Lin W. Y., The selection of magnet optimum operating point for EV’s PMSM, Auto Electric Parts (in Chinese), no. 4, pp. 12–16 (2011).
  • [18] Liu D., Tang Y. H., Liu L. S., Calculation of permanent magnetic working points of polarity magnetic systems based on superposition, Marine Electric & Electronic Engineering (in Chinese), vol. 30, no. 2, pp. 45–49 (2010).
  • [19] Wang Z. L., Cai W., Study on electromagnetic demagnetization performance of rare earth interior permanent magnet synchronous motors, Micromotors (in Chinese), vol. 53, no. 3, pp. 15–19 (2020), DOI: 10.15934/j.cnki.micromotors.2020.03.004.
  • [20] Chen Y. Y., Li Z. Y., Zhou X., Cai T. L., Analysis and optimization of anti-demagnetization performance of composite structure hybrid permanent magnet motor, Electronic Measurement Technology, (in Chinese), vol. 46, no. 11, pp. 1–6 (2023).
  • [21] Xiao Y., Chen B., Li X., Shi J. F., Li Y., Wang D., Simulation analysis of demagnetization for permanent magnet assisted Synchronous reluctance motors, Small & Special Electrical Machines (in Chinese), vol. 49, no. 7, pp. 9–13 (2021).
  • [22] Yu F., Yao L., Chen S., Demagnetization analysis and optimization design of interior permanent magnet synchronous motor, 2020 23rd International Conference on Electrical Machines and Systems (ICEMS), Hamamatsu, Japan, pp. 704–709 (2020).
  • [23] Liu K., Zeng C. B., Li M. X., Yang X. B., Zhou Y., Fast equivalent magnetic circuit analysis of axial flux permanent magnet synchronous motor, Electronic Measurement Technology (in Chinese), vol. 46, no. 24, pp. 14–20 (2023).
  • [24] Li B., Liang H. M., You J. X., Xiong F. Y., Jan K. S., A non-linear permanent magnet working point migration model and its application to simulation of a polarized magnetic system, Journal of Magnetics, vol. 24, no. 3, pp. 448–453 (2019), DOI: 10.4283/jmag.2019.24.3.448.
  • [25] Zhu J., Li S. H., Guo X. W., Nan H. C., Yang M., Analytical calculation of leakage permeance of coreless axial flux permanent magnet generator, COMPEL - The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 41, no. 1, pp. 172–186 (2021), DOI: DOI: 10.1108/compel-04-2021-0140.
  • [26] Gao P., Gu Y. X., Shah S. H., Abubakar U., Wang X. Y., Calculation and analysis of flux leakage coefficient of interior permanent magnet synchronous motors with fractional slot concentrated windings, IEEE Transactions on Applied Superconductivity, vol. 29, no. 2, pp. 1–4 (2019), DOI: 10.1109/tasc.2019.2893740.
  • [27] Pen L., Modeling and analysis of surface mounted permanent magnet synchronous motor with demagnetization fault, MS Thesis (in Chinese), College of Electrical Engineering, Zhejiang University, Hangzhou (2024).
  • [28] Xia P. P., Yu S. B., Dou R. T., Analytical solution of magnetic field and study on the characteristics of surface mounted permanent magnet synchronous motor with asymmetrical magnetic poles, Machine Tool & Hydraulics (in Chinese), vol. 52, no. 18, pp. 85–94 (2024).
  • [29] Li X., Wang S. H., Demagnetization analysis of the interior permanent magnet synchronous motor under different short circuit faults, Journal of China Coal Society (in Chinese), vol. 42, no. S2, pp. 626–632 (2017).
  • [30] Dantam R., Madhan B., Selection of optimal magnets for traction motors to prevent demagnetization, Machines, vol. 9, no. 6, pp. 124–124 (2021), DOI: 10.3390/machines9060124.
  • [31] Wei M., Research on demagnetization of permanent magnet of interior permanent magnet synchronous motor, MS Thesis (in Chinese), School of Electrical Engineering, China University of Mining and Technology, Xuzhou (2023).
  • [32] Zhang J. D., Shan W. T., Chen K. P., Research and Optimization of Demagnetization Performance of PermanentMagnet Synchronous Motorized Spindle, Machine Tool & Hydraulics (in Chinese), vol. 53, no. 1, pp. 24–31 (2025), DOI: 10.3969 / j. issn. 1001-3881.2025.01.004.
  • [33] Alexander Kern, Nora Leuning, Kay Hameyer, Semi-physical demagnetization model for the temperature dependency of permanent magnets in electrical machines, AIP Advances, vol. 13, no. 2, 025105 (2023), DOI: 10.1063/9.0000400.
  • [34] Zhu H., Xu Y., Permanent magnet parameter design and performance analysis of bearing less flux switching permanent magnet motor, IEEE Transactions on Industrial Electronics, vol. 68, no. 5, pp. 4153–4163 (2021), DOI: 10.1109/tie.2020.2984434.
  • [35] You Y. M., Yoon K. Y., Multi-objective optimization of permanent magnet synchronous motor for electric vehicle considering demagnetization, Applied Sciences, vol. 11, no. 5, pp. 2159–2159 (2021), DOI: 10.3390/app11052159.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b5678a89-8208-4cba-9012-a7eb404ba047
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.