PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Smart product design and production control for effective mass customization in the Industry 4.0 concept

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a general concept of smart design and production control as key elements for efficient operation of a smart factory. The authors present various techniques that aid the design process of individualized products and organization of their production in the context of realization of the mass customization strategy, which allows a shortened time of development for a new product. Particular attention was paid to integration of additive manufacturing technologies and virtual reality techniques, which are a base of the so-called hybrid prototyping.
Twórcy
autor
  • Poznan University of Technology, Chair of Management and Production Engineering, Poland
autor
  • Poznan University of Technology, Chair of Management and Production Engineering, Poland
Bibliografia
  • [1] Hamrol A., Strategie i praktyki sprawnego działania [in Polish], Wydawnictwo Naukowe PWN, Warszawa 2015.
  • [2] Brettel M., Friederichsen N., Keller M., Rosenberg M., How virtualization, decentralization and network building change the manufacturing landscape: an Industry 4.0 perspective, International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 8, 1, 2014.
  • [3] Ivanov D., Dolgiu A., Sokolov B., Werner F., Ivanova M., A dynamic model and an algorithm for shortterm supply chain scheduling in the smart factory Industry 4.0, International Journal of Production Research, 54, 2, 386-402, 2016.
  • [4] Lee J., Bagheri B., Kao H.A., A cyber-physical systems architecture for Industry 4.0-based manufacturing systems, Manufacturing Letters, 3, 18-23, 2015.
  • [5] Gorecky D., Schmitt M., Loskyll M., Zuhlke D., Human - machine - interaction in the Industry 4.0 ERA, Industrial Informatics (INDIN), 12th IEEE International Conference, 289-294, 2014.
  • [6] Shrouf F., Ordieres J., Miragliotta G., Smart factories in Industry 4.0: a review of the concept and of energy management approached in production based on the internet of things paradigm, Industrial Engineering and Engineering Management (IEEM), IEEE International Conference on. IEEE, 2014.
  • [7] Gilmore J.H, Pine II B.J., The four faces customization, Harvard Business Review, January-February pp. 21-30, 1997.
  • [8] Fogliatto F.S., da Silveira G.J., Borenstein D., The mass customization decade: An updated review of the literature, International Journal of Production Economics, 138, 1, 14-25, 2012.
  • [9] Salvador F., de Holan P.M., Piller F., Cracking the code of mass customization, MIT Sloan Management Review, 50, 3, 71-78, 2009.
  • [10] Ko E., Kincade D., Brown J.R., Impact of business type upon the adoption of quick response technologies International Journal of Operations & Production Management, 20.9, 1093-1111, 2000.
  • [11] Grosso C., Trentin A., Forza C., Towards an understanding of how the capabilities deployed by a Webbased sales configurator can increase the benefits of possessing a mass-customized product, 16th International Configuration Workshop, 21, 81, 2014.
  • [12] Gorski F., Hamrol A., Kowalski M., Paszkiewicz R., Zawadzki P., An automatic system for 3D models and technology process design, Transactions of FAMENA, 35, 2, 2011.
  • [13] Lin B.T., Hsu S.H., Automated design system for drawing dies, Expert Systems with Applications, 34, 1586-1598, 2008.
  • [14] Chapman C.B., Pinfold M., Design engineering - a need to rethink the solution using knowledge based engineering, Knoledge-Based System, 12, 257-267, 1999.
  • [15] Verhagen W.J.C., Bermell-Garcia P., Van Dijk R.E.C., Curran R., A critical review of KnowledgeBased Engineering: An identification of research challenges, Advanced Engineering Informatics, 26, 1, 5-15, 2012.
  • [16] Choi J.W., Kelly D., Raju J., Reidsema C., Knowledge-based engineering system to estimate manufacturing cost for composite structures, Journal of Aircraft, 42, 6, 1396-1402, 2005.
  • [17] Van der Laan A.H., Knowledge based engineering support for aircraft component design, Design of Aircraft and Rotorcraft, Faculty of Aerospace Engineering, Delft University of Technology, Delft, p. 254, 2008.
  • [18] Tarkian M., Design reuse and automation, Printed in Sweden by LiU-Tryck Link¨oping, 2009.
  • [19] Elgh F., Cederfeldt M., Documentation and management of product knowledge in a system for automated variant design: a case study, New World Situation: New Directions in Concurrent Engineering, Springer, London, pp. 237-245, 2010.
  • [20] Pokojski J., Inteligentne wspomaganie procesu integracji środowiska do komputerowo wspomaganego projektowania maszyn [in Polish], WNT, Warszawa, 2000.
  • [21] Stokes M., Managing engineering knowledge; MOKA: methodology for knowledge based engineering applications, Professional Engineering Publishing, London, 2001.
  • [22] Skarka W., Metodologia procesu projektowokonstrukcyjnego opartego na wiedzy [in Polish], Wydawnictwo Politechniki Slaskiej, Gliwice, 2007.
  • [23] Curran R., Verhagen W.J.C., Van Tooren M.J.L., Van der Laan A.H., A multidisciplinary implementation methodology for knowledge based engineering: KNOMAD, Expert Systems with Applications, 37, 11, 7336-7350, 2010.
  • [24] Gorski F., Bun P., Wichanirek R., Zawadzki P., Hamrol A., Immersive city bus configuration system for marketing and sales education, Procedia Computer Science, 75, 137-146, 2015.
  • [25] Gorski F., Bun P., Wichniarek R., Zawadzki P., Hamrol A., Design and implementation of a complex virtual reality system for product design with active participation of end user, Advances in Human Factors, Software and Systems Engineering, B. Amaba [Ed.], Advances in Intelligent Systems and Computing 492, p. 31-43, Springer, 2016.
  • [26] Gorski F., Hamrol A., Grajewski D., Zawadzki P., Integracja technik wirtualnej rzeczywistości i wytwarzania przyrostowego - hybrydowe podejście do rozwoju wyrobu [in Polish], Mechanik, 3/2013, 4/2013.
  • [27] Gorski F., Wichniarek R., Kuczko W., Zawadzki P., Bun P., Strength of ABS parts produced by Fused Deposition Modelling technology - a critical orientation problem, Adv. Sci. Technol. Res. J., 9/26, 12- 19, 2015.
  • [28] Grajewski D., Gorski F., Zawadzki P., Hamrol A., Application of Virtual Reality Techniques In Design Of Ergonomic Manufacturing Workplaces, International Conference on Virtual and Augmented Reality in Education Volume, 25, 289-301, 2013.
  • [29] Pandilov Z., Milecki A., Nowak A., Gorski F., Grajewski D., Ciglar D., Klaić M., Mulc T., Virtual Modelling and simulation of a CNC machine feed drive system, Transactions of FAMENA, 39, 4, January 2016.
  • [30] Bun P., Gorski F., Wichniarek R., Kuczko W., Hamrol A., Zawadzki P., Application of professional and low-cost head mounted devices in immersive educational application, Procedia Computer Science, 75, 173-181, 2015.
  • [31] Grajewski D., Gorski F., Hamrol A., Zawadzki P., Immersive and haptic educational simulations of assembly workplace conditions, Procedia Computer Science, 75, 359-368, 2015.
  • [32] Grajewski D., Diakun J., Wichniarek R., Dostatni E., Buń P., Górski F., Karwasz A., Improving the skills and knowledge of future designers in the field of ecodesign using virtual reality technologies, International Conference Virtual and Augmented Reality in Education, Procedia Computer Science, 75, 348-358, ISSN 1877-0509, 2015.
  • [33] Maleshkov S., Katicic J., Stojanova P., Bachvarov A.G., Design-by-the-Customer through Virtual Reality, Advanced Research in Virtual and Rapid Prototyping, Proceedings of VR@P4,Leiria, Portugal, 2009.
  • [34] Buń P., Górski F., Wichniarek R., Kuczko W., Zawadzki P., Immersive educational simulation of medical ultrasound examination, Procedia Computer Science, 75, 186-194, 2015.
  • [35] Trojanowska J., Żywicki K., Pająk E., Influence of selected methods of production flow control on environment, Information Technologies in Environmental Engineering, 3, 695-705, 2011.
  • [36] Trojanowska J., Żywicki K., Varela M.L.R., Machado J., Improving production flexibility in an industrial company by shortening changeover time: a triple helix collaborative project, multiple helix ecosystems for sustainable competitiveness, Springer International Publishing, pp. 133-146, 2016.
  • [37] Piłacińska M., Leśniak K., Kujawińska A., Żywicki K., The data model of production flow and quality control system [in Polish], Studia Informatica, 30, 2B, 109-126, 1642-0489, 2009.
  • [38] Colombo A., Bangemann T., Karnouskos S., Delsing J., Stluka P., Harrison R., Jammes F., Lastra J.L., Industrial cloud-based cyber-physical systems: the IMC-AESOP approach, New York: Springer, 2014.
  • [39] Seitza K.F., Nyhuisa P., Cyber-physical production systems combined with logistic models - a learning factory concept for an improved production planning and control, The 5th Conference on Learning Factories 2015, Procedia CIRP 32, pp. 92-97, 2015.
  • [40] Veigt M., Labbe D., Hribernik K.A., Scholz-Reiter B., Entwicklung eines Cyber-Physischen Logistiksystems, Industrie Management, 1, 15-18, 2013.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b5637242-3a9b-4b1a-a0e5-ddadb7a30972
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.