PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A proper borehole pattern design for coal seam methane drainage in Tabas coal mine using Comsol Multiphysics

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Optimizing the operational parameters of the borehole pattern in the coal seam includes the maximum amount of gas to be drained with the least amount of drilling, investment, and drainage time. The main purpose of this research is to properly design the drainage borehole pattern in the C1 coal seam of the Tabas coal mine. In this research, the Comsol Multiphysics software was used for numerical modeling of the boreholes. According to the method of diffusion of methane gas in a coal seam, the reduction of methane gas concentration and the amount of gas released from the coal blocks were approximated. For the gas drainage boreholes, the three patterns of the rectangular, parallelogram, and triangular forms were considered. Also, the boreholes were modeled with the three diameters of 76, 86, and 96 mm. This modeling was performed for 180 days of drainage operation and showed that the triangular pattern was more suitable than the other two patterns. The presented model is applicable in coal mines where gas drainage operations are necessary and helps engineers design the patterns of drainage boreholes to maximize their gas drainage efficiency.
Rocznik
Strony
54--64
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
  • M.Sc. graduated in mining exploitation, Department of Mining and Metallurgical Eng., Yazd University, Yazd, Iran
autor
  • Department of Mining and Metallurgical Eng., Yazd University, Safayieh
  • Professor, Department of Mining and Metallurgical Eng., Yazd University, Yazd, Iran
  • Assistant Professor, Faculty of Mining, Petroleum and Geophysics Engineering, Shahrood University of Technology, Iran
Bibliografia
  • [1] Thakur P, Schatzel SJ, Aminian K. Coal bed methane: from prospect to pipeline. Elsevier; 2014.
  • [2] Black DJ. Factors affecting the drainage of gas from coal and methods to improve drainage effectiveness. PhD thesis. University of Wollongong; 2011.
  • [3] Moll ATJ. A study of optimisation methods applied to methane recovery and mine ventilation systems, PhD Thesis. The University of Nottingham (United Kingdom); 1993.
  • [4] Ramaswamy S. Selection of best drilling, completion and stimulation methods for coalbed methane reservoirs. Doctoral dissertation, Texas A & M University; 2007.
  • [5] Huang H, Shuxun SANG, Fang Liangcai, Guojun LI, Hongjie XU, Ren Bo. Optimum location of surface wells for remote pressure relief coalbed methane drainage in mining areas. Min Sci Technol 2010;20(2):230-7.
  • [6] Keim SA, Luxbacher KD, Karmis M. A numerical study on optimization of multilateral horizontal wellbore patterns for coalbed methane production in Southern Shanxi Province, China. Int J Coal Geol 2011;86(4):306-17.
  • [7] Gentzis T. Stability analysis of a horizontal coalbed methane borehole in the San Juan basin, USA. Energy Sources, Part A Recovery, Util Environ Eff 2011;33(21):1969-84.
  • [8] Lian J. The design of gas drainage holes? Opening parameters intelligent measurement and control system for coal mine. Proc Earth Planet Sci 2011;3:331-7.
  • [9] Zhang L, Aziz NI, Ren T, Wang Z. Influence of temperature on coal sorption characteristics and the theory of coal surface free energy. Procedia Eng 2011;26:1430-9.
  • [10] Ding H, Jiang Z, Zhu Q. Optimized parameters and forecast analysis of high-position hole for goaf gas drainage. Procedia Eng 2012;45:305-10.
  • [11] Haisheng, Q., & Kuijun, W. Mathematical model of gas drainage through bedding boreholes in a coal seam and numerical simulation. EJGE, Vol. 19, Pages 3723-3731.
  • [12] Zhou J, Liang G, Deng T, Zhou S. Optimization design of coalbed methane pipeline network-coupled wellbore/reservoir simulation. Adv Mech Eng 2017;9(6). 1687814017708905.
  • [13] Taheri A, Sereshki F, Ardejani FD, Mirzaghorbanali A. Simulation of macerals effects on methane emission during gas drainage in coal mines. Fuel 2017;210:659-65.
  • [14] Xing Y, Zhang F. Optimizing borehole spacing for coal seam gas pre-drainage. J Geophys Eng 2019;16(2):399-410.
  • [15] Qin W, Xu J, Hu G, Gao J, Xu G. Measurement and simulation study on effective drainage radius of borehole along coal seam. Energy Explor Exploit 2019;37(6):1657-79.
  • [16] Wei P, Huang C, Li X, Peng S, Lu Y. Numerical simulation of boreholes for gas extraction and effective range of gas extraction in soft coal seams. Energy Sci Eng 2019;7(5): 1632-48.
  • [17] Guo Z, Chen Y, Yao S, Zhang Q, Liu Y, Zeng F. Feasibility analysis and optimal design of acidizing of coalbed methane wells. J Energy Resour Technol 2019;141(8).
  • [18] Liu P, Fan J, Jiang D, Li J. Evaluation of underground coal gas drainage performance: mine site measurements and parametric sensitivity analysis. Process Saf Environ Protect 2021; 148:711-23.
  • [19] Fan J, Liu P, Li J, Jiang D. A coupled methane/air flow model for coal gas drainage: model development and finite-difference solution. Process Saf Environ Protect 2020;141: 288-304.
  • [20] Tabas Parvadeh Coal mine. Ventilation and gas drainage Report. 2018.
  • [21] Comsol Multi Physice. Heat transfer moulde user Guide. 2012. VERSION 4.2.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b56333b3-d82d-4eab-a058-b9f01e274731
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.