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1. Introduction 

In the middle of the 1960s Arthur P. Dempster devel-

oped a theory [1], [2], [3] that includes a kind of “up-

per and lower probabilities”. Later, it turned out that 

this approach is very useful to express uncertain 

judgments of experts. 

  About ten years later the work of Dempster was ex-

tended, refined, recast, and published by Glenn Shafer 

[18] as a “Mathematical Theory of Evidence”. Shafer 

e.g. rebuilt the mathematical theory around the Demp-

ster concept and introduced degrees of belief instead 

of lower probabilities. The Theory of Evidence was 

also denoted as the Dempster-Shafer Theory (DST) or 

the Dempster-Shafer Evidential Theory. 

  The more the Dempster-Shafer Theory was further 

developed, the more the evidence measures of DST 

departed from being probabilities, e.g. Klir & Folger 

[11] revised DST in that sense. As stated by [4] and 

[20], the advantage of DST is that it allows coping 

with absence of preference, due to limitations of the 

available information, which results in indeterminacy. 

 

2. Fundamentals 

The DST became known to the safety and reliability 

community in the early 1990s, refer e.g. Guth [7]. The 

reliability-oriented approach to DST as presented here 

is based on a scenario that contains the system with 

all hypotheses, pieces of evidence and data sources. 

  The hypotheses represent all the possible states (e.g. 

faults) of the system considered. It is required that all 

hypotheses are elements (singletons) of the frame of 

discernment, which is given by the finite universal set 

. The set of all subsets of  is its power set 2

. A 

subset of those 2

 sets may consist of a single hy-

pothesis or of a conjunction of hypotheses. Moreover, 

it is required that all hypotheses are unique, not over-

lapping and mutually exclusive. 

  In this context pieces of evidence are symptoms or 

events (e.g. failures) that occurred or may occur 

within a system. One piece of evidence is related to a 

single hypothesis or a set of hypotheses. It is not al-

lowed that different pieces of evidence lead to the 

same hypothesis or set of hypotheses. 

  The qualitative relation between a piece of evidence 

and a hypothesis corresponds to a cause-consequence 

chain: A piece of evidence implies a hypothesis or a 

set of hypotheses, respectively. The strength of an 

evidence-hypothesis assignment, and thereby the 

strength of this implication, is quantified by a state-

ment of a data source. 

  Data sources are persons, organisations, or any other 

entities that provide information for a scenario. In 

safety and reliability engineering, data sources are 

usually the results of empirical studies or they are ex-

perts, who give subjective quantifiable statements. As 

required by O'Neill [13], data sources have to be rep-

resentative (e.g. studies) or as free from bias as possi-

ble (e.g. experts). 

  Some misunderstandings in interpretations concern-

ing the plot of hypotheses have to be cleared up. From 

an objective point of view, which might e.g. be lo-
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cated outside the system (e.g. observer), exactly one 

single hypothesis is true; from a subjective point of 

view of a data source (e.g. expert or operator), it 

might be uncertain which hypothesis fits best to real-

ity. Therefore, DST makes it possible to model several 

 single pieces of evidence within single hypothesis 

relations or 

 single pieces of evidence within multi hypotheses 

relations 

as uncertain assessments of a system in which exactly 

one hypothesis is objectively true. Both points of 

view, the objective and the subjective, have to be dis-

tinguished clearly. The DST calculus describes the 

subjective viewpoint as an assessment for an unknown 

objective fact. 

  By means of a data source, a mapping 

 

   m: 2

  [0, 1] (1) 

  

assigns an evidential weight to a set A  , which 

contains a single hypothesis or a set of hypotheses. 

This is the most significant difference to the Probabil-

ity Theory: The DST mapping distinguishes clearly 

between the evidence measures and probabilities with 

mapping   [0, 1]. Each A that holds m(A) > 0 is 

called a focal element. The function m is called a ba-

sic assignment and fulfils 

 

     A A 1)(m  . (2) 

 

This equation means that all statements of a single 

data source have to be normalised, just to ensure that 

the evidence presented by each data source is equal in 

weight, e.g. no data source is more important than an-

other one. – For the “sake of simplicity” (Klir & Fol-

ger [11]), it is assumed that 

 

   m() = 0 ; (3) 

 

however, this property requires an appropriate choice 

of the universal set . That means, the set  has to be 

complete and contain all possible hypotheses of the 

scenario considered. 

   In some publications m is called the basic probabil-

ity assignment, refer Shafer [18], which misleads to 

the assumption m(A) might be a probability. Further 

denotations are the basic belief assignment [19], the 

belief structure [21], [4] or the mass assignment func-

tion [14]. 

  A clear distinction has to be made between probabili-

ties and basic belief assignment: probability distribu-

tion functions are defined on  and basic assignment 

functions on the power set 2

. In addition, m has three 

further properties, which distinguishes it from being a 

probability function, refer Klir & Folger [11]: It is not 

required 

 that m() = 1, 

 that m(A)  m(B) if A  B, or 

 that there is a relationship between m(A) and 

m(A). 

Therefore, it seems to be useful to avoid the terms 

probability and belief (which is defined next) in the 

denotation of m. 

  By applying the basic assignment function, several 

evidential functions can be created. A belief measure 

is given by the function bel: 2

  [0,1]. There is 

 

     BAB mbel ; )()( BA . (4) 

 

The counterpart of bel is the plausibility measure pl: 

2

  [0,1] with 

 

     AB mpl )()( BA . (5) 

 

The measure pl(A) shall not be understood as the 

complement of bel(A). Only 

 

     )()(0)(| AAAA plbelm   (6) 

 

has to be fulfilled. In addition to bel and pl, a third 

evidential function can be defined. Shafer [18] intro-

duced the commonality measure with cmn: 2

  [0,1] 

and 

 

     AB mcmn )()( BA . (7) 

 

Figure 1 shows a graphical representation of the 

above-defined measures belief and plausibility. The 

difference pl(A) – bel(A) describes the evidential in-

terval range, which represents the uncertainty con-

cerning the set A. 

 
0 1

Belief

bel(A)

Plausibility

pl(A)
Disbelief  
1 -  pl(A)

Doubt
1 - bel(A)

Uncertainty  

Figure 1. Measures of belief and plausibility and its 

complements for a given bel(A) < pl(A). The eviden-

tial or the uncertainty interval, respectively, is shaded 

grey. 

 

The complements to the measures belief and plausibil-

ity are doubt and disbelief, respectively. Although 

Shafer ([18], page 43) defines doubt as a complement 
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to the measure plausibility, it seems to make more 

sense to distinguish between doubt and disbelief in the 

way given above because DST does not require a 

causal relationship between a hypothesis and its nega-

tion. As Flack [6] emphasises, lack of belief does not 

imply disbelief. The disbelief of set A is the belief in 

the complement. There is 

 

   bel(A) = 1 – pl(A) , pl(A) = 1 – bel(A) (8) 

 

with 

 

   bel(A)  pl(A) . (9) 

 

The difference pl(A) – bel(A) describes the uncer-

tainty concerning the hypothesis A represented by the 

evidential interval, see Figure 1. 

 

2.1. Interpretations on Evidence Measures 

Some helpful and interesting interpretations of the 

evidence measures are given in the literature and cited 

here. 

Basic Assignment 

 The measure m(A) assigns an evidential weight to 

the set A, refer Flack [6]. 

 The measure m(A) is the degree of evidence that 

the element in question belongs exactly to the set 

A, refer Klir & Folger [11]. 

 The measure m(A) is the degree of evidence sup-

porting the claim that a specific element of  be-

longs to the set A, but not to any special subset of 

A, refer Klir & Folger [11]. 

 The quantity m(A) is the degree of belief that the 

above specified claim is warranted, refer Klir & 

Folger [11]. 

Belief 

 The measure bel(A) is the degree of evidence that 

the element in question belongs to the set A as well 

as to the various special subsets of A, refer Klir & 

Folger [11]. 

 The measure bel(A) can be interpreted as the total 

amount of justified support given to A, refer De-

noeux [4]. 

 The measure bel(A) is the degree of evidence sup-

porting the claim that a specific element of  be-

longs to the set A, but not to any special subset of 

A, refer Klir & Folger [11]. 

Plausibility 

 The quantity pl(A) is the degree of evidence that 

the element in question belongs to the set A or to 

any of its subsets [or to any set that overlaps with 

A], refer Klir & Folger [11]. 

 The quantity pl(A) can be interpreted as the maxi-

mum amount of specific support that could be 

given to A, if justified by additional information, 

refer Smets [19]. 

 

2.2. Bayesian Statistical Modelling versus 

Dempster-Shafer Theory 

Flack [6] describes the differences between the Bayes-

ian statistical modelling and the Dempster-Shafer 

Theory as a difference in concepts. A Bayesian model 

describes a Boolean type of phenomena, which either 

exist or do not exist. Little belief in the existence of a 

phenomenon implies a strong belief in its non-

existence. This implication does not necessarily hold 

for DST. Here, no causal relationship is required be-

tween both, belief in existence and belief in non-

existence. For example, a statement concerning the 

failure probability of an item also implies a statement 

about its counterpart, the reliability of the same item. 

DST does not require this sub-proposition; and that 

adds new aspects and possibilities to reliability model-

ling. 

  As stated by Ferson et al. [5], the Dempster-Shafer 

Theory has been widely studied in computer science 

and artificial intelligence, but has never achieved 

complete acceptance among probabilists and tradi-

tional statisticians. (By this, the question arises if any 

other theory than the Probability Theory would ever 

be accepted by probabilists or traditional statisticians.) 

 However, there are still some disadvantages of the 

Probability Theory for the DST, which should also be 

stated here. There are three undesired main properties 

as listed by [4]: 

 Lack of introspection or assessment strategies: The 

main criticisms of the Bayesian statistical model-

ling is its unreasonable requirement for precision. 

But the necessity to assign precise numbers in DST 

applications to each subset A   by the basic as-

signment m is constraining in the same way. Pre-

cise degrees of the desired measures may exist, but 

it is perhaps too difficult to determine them with 

the necessary precision. 

 Instability: Underlying beliefs may be unstable. 

Estimated beliefs may be influenced by the condi-

tions of its estimation. 

 Ambiguity: Ambiguous or imprecise judgement 

could not be expressed by the evidence measures. 

Additional statements to disadvantages of the Demp-

ster-Shafer Theory are: 

 DST lists all the hypotheses into the frame of dis-

cernment , which resembles the fault space in the 

Bayesian Theory. However, given k hypotheses, it 

can consist of up to 2
k
 elements, representing all 

possible subsets of . This leads to a similar prob-

lem encountered in the Bayesian Theory, except 



Rakowsky Uwe Kay 

Fundamentals of the Dempster-Shafer theory and its applications to system safety and reliability modelling 

 

 286 

that it is worse because human experts have to es-

timate a larger number of belief values than after 

the Bayesian theory [12]. 

 Another caveat of the applicability of DST is that it 

does not offer a procedure for implementation of a 

diagnostic system [10]. 

 

2.3. Dempster-Shafer Rule of Combination 

Dempster [2], [3] followed by Shafer [18] suggested a 

rule of combination which allows that the basic as-

signments are combined. There is 

 

   


















BA

ZBA

BA

BA

Z
)()(1

)()(

)(
mm

mm

m , (10) 

 

with A, B, Z  . Verbally: the numerator represents 

the accumulated evidence for the sets A and B, which 

supports the hypothesis Z, and the denominator sum 

quantifies the amount of conflict between the two sets. 

Depending on the application, the denominator of 

 



















BA

ZBA

BA

BA

Z
)()(

)()(

)(
mm

mm

m , (11) 

 

is easier to apply. 

 

3. Illustration 

The following illustration is strictly step-wise struc-

tured and gives an easy-to-understand introduction to 

the calculus of the Dempster-Shafer Theory. 

  The given scenario discusses a typical situation in a 

power plant. The operators at the control panel detect 

serious changes of the system properties. Some fail-

ures are detectable; however, their consequences or 

the system fault, respectively, can neither be deter-

mined exactly nor interpreted certainly. (This situation 

is widely discussed e.g. in the ATHEANA Report [14] 

and by Hollnagel [8].) To avoid an error forcing con-

text, pieces of evidence are collected, hypotheses are 

postulated, and conclusions are made on this basis. 

Therefore, a Dempster-Shafer approach is applied to 

support the operators in decision making. 

 

Step  – Creating the Scenario 

The scenario consists of a power plant (the system 

considered), two operators (data sources, denoted by 

the index l), the failures detected (pieces of evidence), 

and the system fault states (set of hypotheses). As de-

scribed above, the pieces of evidence correspond to 

failures or causes and the hypotheses to faults or con-

sequences. 

 The faults can be determined to at most three pre-

cisely defined hypotheses represented by the set  

with 

 

 = {h1, h2, h3} . (12) 

 

With that, the frame of discernment of this context is 

given. It should be noted that  is postulated by the 

operators based on their subjective points of view, 

assuming that  is complete. The corresponding 

power set of  is 

 

   2

 = {, {h1}, {h2}, {h3}, {h1, h2}, {h1, h3}, 

          {h2, h3}, } . (13) 

 

The first operator mainly states that the faults h1 or h2 

are the reason for the problems. For example, the fail-

ure ev3 might have occurred and resulted in the conse-

quences h1 or h2. The assignments of the second op-

erator are slightly different. Here, focus is on the 

faults h1 or h3. Both operators give their statements to 

the four pieces of evidence found. The complete sur-

vey of the qualitative failure-fault(s) assignments is 

given in Table 1. 

 

Table 1. Qualitative failure-fault(s) assignments given 

by the operators involved 

 

  Failure Fault(s) 

O
p

e
ra

to
r 

1
st
 ev1 

ev2 

ev3 

ev4 

h1 

h2 

h1, h2 

h1, h2, h3 

2
nd

 ev1 

ev2 

ev3 

ev4 

h1 

h3 

h1, h3 

h1, h2, h3 

 

Please note that contrary to the Fault Tree Analysis 

(FTA), DST does not allow that more than one failure 

lead to the same fault (hypothesis). However, different 

failures may have different set of consequences, 

which may contain the same hypotheses as elements, 

e.g. ev1, ev3, and ev4 in Table 1 lead to hypotheses, 

which all contain h1 as a fault. Again, DST allows 

modelling several 

 single-failure-single-fault relations and 

 single-failure-multi-fault relations 

as an uncertain assessment of a system, which can 

take exactly one state at a time. Generally, DST em-

phasizes more on the hypotheses (faults) than on the 

pieces of evidence (failures), which are of minor in-

terest in the next steps. 
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  As described in Section 0, the system is exactly in 

one state of . In other words, exactly one hypothesis 

of {h1, h2, h3} is true for the given scenario and situa-

tion if the system would be observed from an objec-

tive point of view. Subjectively, the operators are not 

sure, in which state the system actually is. 

 

Step  – Quantification of Statements 

At this step, both operators quantify their statements 

as given in Table 2. The set of hypotheses A is as-

signed to the first operator, B to the second operator. 

For example, the second operator claims that the con-

sequences h1 or h3 may have occurred with a basic 

assignment of 0.4. (Formulating this sentence ver-

bally, it is rather difficult to avoid that the tongue 

mentions “probability”. Again, basic assignments are 

not probabilities, see equation (1).) Non-specified 

statements are assigned by 0 and are not focal ele-

ments. 

  The subjective quantifications of the operators are 

based on their system experiences and mostly on their 

“engineering feelings”. Certainly, these quantifica-

tions are imprecise. 

 

Table 2. Quantitative statements given by the opera-

tors involved (outer columns). The inner column con-

tains all subsets of the power set 2 . 

 

1
st

 operator 2 2
nd

 operator 

m(A1) = 0.2 
m(A2) = 0.1 
m(A3) = 0 
m(A4) = 0.6 
m(A5) = 0 
m(A6) = 0 
m(A7) = 0.1 

{h1} 

{h2} 

{h3} 

{h1  h2} 

{h1  h3} 

{h2  h3} 

{h1  h2  h3} 

m(B1) = 0.2 

m(B2) = 0 

m(B3) = 0.2 

m(B4) = 0 

m(B5) = 0.4 

m(B6) = 0 

m(B7) = 0.2 

 

Based on the basic assignments given by both opera-

tors, the belief and doubt, commonality, plausibility 

and disbelief measures can be calculated. For exam-

ple, the belief in the set of hypotheses {h1  h2} is the 

sum of its own basic assignment with those of all of 

its subsets 

 

   {h1}, { h2}, {h1  h2}  {h1  h2} , (14) 

 

see equation (4). For the fourth statement of the first 

operator there is 

 

   bel(A4) = m(A1) + m(A2) + m(A4) = 0.9, (15) 

 

with the corresponding doubt measure 

 

   1 – bel(A4) = 0.1 . (16) 

 

The commonality takes every statement into account, 

which includes the discussed statement completely. 

There is for A4 

 

   {h1  h2}, { h1  h2  h3}  {h1  h2} , (17) 

 

   cmn(A4) = m(A4) + m(A7) = 0.7 . (18) 

 

The plausibility includes basic assignments of all 

statements which have got at least one hypothesis with 

those of the discussed statement in common. Concern-

ing A4, there is 

 

   {h1}, {h2}, {h1  h2}, {h1  h3}, {h2  h3}, 

 

   {h1  h2  h3}  {h1  h2}   , (19) 

 

which results in the plausibility 

 

   pl(A4) = m(A1) + m(A2) + m(A4) + m(A5)  

 

              + m(A6) + m(A7) = 1 (20) 

 

and finally in no disbelief at all 

 

   1 – pl(A4) = 0 . (21) 

 

Table 3 shows the results for belief and plausibility of 

all statements (k = 1,…, 7). 

 

Table 3. This table corresponds to Table 2 and shows 

the values of basic assignments (bold typing), belief, 

and plausibility for each statement and operator (first 

left side, second right side). 

 

m(Ak) bel(Ak) pl(Ak) 2 m(Bk) bel(Bk) pl(Bk) 

0.2 
0.1 
0 

0.6 
0 
0 

0.1 

0.2 
0.1 
0 

0.9 
0.2 
0.1 
1 

0.9 
0.8 
0.1 
1 

0.9 
0.8 
1 

{h1} 

{h2} 

{h3} 

{h1  h2} 

{h1  h3} 

{h2  h3} 



0.2 
0 

0.2 
0 

0.4 
0 

0.2 

0.2 
0 

0.2 
0.2 
0.8 
0.2 
1 

0.8 
0.2 
0.8 
0.8 
1 

0.8 
1 

 

Step  – Combining Hypotheses 

The third step combines each hypothesis or set of hy-

potheses, respectively, from one data source (opera-

tor) with one from the other source and builds the cut 

set of both, see Table 4. Depending on quantifications 

given at Step , some of the cut sets may not be focal 

elements before or thereafter. Actually, this step was 

fit in for illustrative purpose and can be combined 

with Step . 
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Table 4. The Combination Table contains the full plot 

of hypotheses cut sets of A and B 

 

 A1 A2 A3 A4 A5 A6 A7 

B1 

B2 

B3 

B4 

B5 

B6 

B7 

h1 
 
 
h1 
h1 
 

h1 

 
h2 
 
h2 
 
h2 
h2 

 
 
h3 
 
h3 
h3 
h3 

h1 
h2 
 

h1h2 
h1 
h2 

h1h2 

h1 
 
h3 
h1 

h1h3 
h3 

h1h3 

 
h2 
h3 
h2 
h3 

h2h3 
h2h3 

h1 
h2 
h3 

h1h2 
h1h3 
h2h3 


 

Step  – Reducing the Combination Table 

To avoid mathematical effort, those columns and rows 

of the Combination Table 4 were dropped, which are 

related to non-focal elements (non-specified state-

ments with m(Ak) = 0, m(Bk) = 0). In this context, col-

umns A3, A5, A6 and rows B2, B4, B6 are not applica-

ble. Table 5 shows the reduced plot containing the 

combinations of focal elements exclusively. 

 

Table 5. The reduced Combination Table 

 

 A1 A2 A4 A7 

B1 

B3 

B5 

B7 

h1 
 
h1 
h1 

 
 
 
h2 

h1 
 
h1 

h1h2 

h1 
h3 

h1h3 


Step  – Calculating Products and Sums of Com-

bined Basic Assignments 

At this step, products of the related basic assignments 

are calculated from the non-empty sets. Products of 

basic assignments corresponding to the same cut set 

have to be added. For {h1} yields 

 

   Z1 = A1  B1 = {h1}  

 

 m(Z1) = m(A1)  m(B1) = 0.04 , (22) 

 

   Z2 = A1  B5 = {h1}  

 

m(Z2) = m(A1)  m(B5) = 0.08 , (23) 

 

   Z3 = A1  B7 = {h1}  

 

m(Z3) = m(A1)  m(B7) = 0.04 , (24) 

 

   Z4 = A4  B1 = {h1}  

 

m(Z4) = m(A4)  m(B1) = 0.12 , (25) 

 

   Z5 = A4  B5 = {h1} 

 

   m(Z5) = m(A4)  m(B5) = 0.24 , (26) 

   Z6 = A7  B1 = {h1}  

 

 m(Z6) = m(A7)  m(B1) = 0.02 (27) 

 

with the sum 

 

   54.0)(
6

1


k

km Z . (28) 

 

Hypotheses h2 or h3 are supported by 

 

   Z7 = A2  B7 = {h2}  

 

m(Z7) = m(A2)  m(B7) = 0.02 , (29) 

 

   Z8 = A7  B3 = {h3}  

 

 m(Z8) = m(A7)  m(B3) = 0.02 . (30) 

 

There is for the sets {h1  h2}, {h1  h3}, and {h1  h2 

 h3}: 

 

   Z9 = A4  B7 = {h1  h2}  

 

 m(Z9) = m(A4)  m(B7) = 0.12 , (31) 

 

   Z10 = A7  B5 = {h1  h3} 

 

   m(Z10) = m(A7)  m(B5) = 0.04 , (32) 

 

   Z11 = A7  B7 = {h1  h2  h3}  

 

m(Z11) = m(A7)  m(B7) = 0.02 . (33) 

 

To illustrate this formal procedure, the results are 

given in Table 6. 

 

Table 6. This table corresponds directly to Table 5 and 

represents the products () of basic assignments;  

means no focal element 

 

 A1 A2 A4 A7 

B1 

B3 

B5 

B7 

0.04 
 

0.08 
0.04 

 

 

 

0.02 

0.12 
 

0.24 
0.12 

0.02 
0.02 
0.04 
0.02 

 

Step  – Combining Basic Assignments 

The sum over all combinations calculated in Step , 
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is identical with the denominator of equation (11). 

With that, the basic assignment of every hypothesis 

can be calculated. There is 
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for the hypothesis h1 and 
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for all relevant sets of hypotheses. 

 

Step  – Evidence Measures of Combined Hypothe-

ses 

The evidence measures of combined hypotheses are 

calculated according to Step , Table 7. The set {h1  

h2} does not occur because it vanished in Table 5. 

 

Step  – Interpretation 

Starting at the same low value, h3 takes roughly half 

the range of uncertainty that h2 takes. However, both 

hypotheses alone should not be considered further due 

to the low values of belief and plausibility. With about 

~0.24, the single hypothesis h1 is assigned with a wide 

range of uncertainty. The combination of h1 and h3 

covers a smaller range (~0.18) than h1 alone, and it 

has a higher plausibility. Finally, a combination of h1 

and h2 shows the smallest range of uncertainty (~0.08) 

with the same (highest) plausibility as in case of the 

combination of h1 and h3. 

 The conclusion is that a combination of h1 and h2 

may be responsible for the serious changes of the sys-

tem properties. Please note that a probabilistic ap-

proach would have blamed h1 alone for being respon-

sible. (And please consider the consequences.) This 

result clearly shows the differences between both 

theories, based on their different mappings   [0, 1] 

versus 2

  [0, 1], see Section 0. 

 

Table 7. The basic assignments (bold) and the result-

ing evidence measures belief, commonality, and plau-

sibility are given; hypotheses are ranked by their be-

lief measures, all values are rounded. 

 

2 m bel cmn pl 

 

{h1  h2} 

{h1  h3} 

{h1} 

{h2} 

{h3}

0.0263 

0.1579 

0.0526 

0.7105 

0.0263 

0.0263 

1 

0.8947 

0.7895 

0.7105 

0.0263 

0.0263 

0.0263 

0.1842 

0.0789 

0.9474 

0.2105 

0.1053 

1 

0.9737 

0.9737 

0.9471 

0.2105 

0.1053 

 

4. Applications to System Safety and Reliabil-

ity Modelling 

The introductory descriptions of the Failure Modes, 

Effects, and Criticality Analysis, the Event Tree 

Analysis, and the Fault Tree Analysis are taken from 

the “System Safety Analysis Handbook” written by 

Stephens & Talso [29] and published by the System 

Safety Society. The descriptions are shortened and 

slightly revised. The introductory description of the 

Reliability Centred Maintenance is taken from [23]. 

Additionally, the IEC standards are recommended for 

the application of all listed methods, refer to Section 

0. 

 

4.1. Failure Modes, Effects, and Criticality 

Analysis 

As described by Stephens & Talso [29], the Failure 

Modes, Effects, and Criticality Analysis (FMECA) 

tabulates a list of items in a process along with all the 

possible failure modes for each item. The effect of 

each failure is evaluated and ranked according to a 

severity classification. An FMECA includes the fol-

lowing steps: 

 Define the worksheet formats and ground rules. 

 Give analysis assumptions. 

 Identify the lowest indenture level of analysis. 

 Code the system description. 

 Give failure definitions and evaluations. 
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The usefulness of the FMECA as a design tool and in 

the decision making process depends on the effective-

ness with which problem information is communi-

cated for early design attention. Probably the most 

severe criticism of the FMECA has been its limited 

use for improvement of designs, as Stephens & Talso 

[29] claim. The main causes for this have been the 

untimeliness and the isolated performance of the 

FMECA without adequate inputs to the design proc-

ess. While the objective of an FMECA is to identify 

all modes of failure within a system design, its first 

purpose is the early identification of all critical failure 

probabilities so that they can be eliminated or mini-

mised through design correction at the earliest possi-

ble time. 

  The Dempster-Shafer calculus, as described by the 

illustration in Section 0, can easily be applied to the 

FMECA. If more than one expert is involved in the 

quantitative assessments of the criticality and the oc-

currence of an item failure. The results are narrow or 

wide ranges of uncertainties, which require an inter-

pretation similar to Step  Section 0. 

  However, it is an interesting question if institutions, 

which conduct system homologations, would accept 

these results. 

 

4.2. Event Tree Analysis 

As summarised by Stephens & Talso [29], the Event 

Tree Analysis (ETA) is an analytical tool that can be 

used to organise, characterise, and quantify potential 

failures in a methodical manner. An event tree models 

the sequence of events that results from a single initi-

ating event. The ETA is a bottom-up analysis versus 

the top-down approach for the Fault Tree Analysis, 

see Section 0. 

  Conducting an ETA starts with selection of the initi-

ating events, both the desired events and the ones not 

desired. Thereafter, their consequences are developed 

through consideration of component, module, and sys-

tem failure-and-success alternatives, respectively. The 

identification of initiating events may be based on re-

view of the system design and operation, the results of 

another safety analysis, or personal operating experi-

ence acquired with a similar system. Then the success 

and failure of the mitigating systems are postulated 

and continued through all alternate paths, considering 

each consequence as a new initiating event. The basic 

steps for construction of an event tree include the fol-

lowing: 

 List all possible initiating events. 

 Identify functional system responses. 

 Identify support system responses. 

 Group initiating events with all responses. 

 Define failure sequences. 

 Assign probabilities to each step in the event tree 

to arrive at total probability of occurrence for each 

failure sequence. 

The method is universally applicable to all kinds of 

systems, with the limitation that all events must be 

anticipated to produce meaningful analytical results. 

  Among the methods presented in the “System Safety 

Analysis Handbook” by Stephens & Talso [29], the 

Event Tree Analysis is definitely one of the most ex-

haustive, if it is applied properly. Axiomatically, their 

use also consumes large quantities of resources. Their 

use, therefore, is well reserved for systems in which 

risks are regarded as high and well concealed. 

  As described by Stephens & Talso [29], probabilities 

are assigned to each step in the event tree. To apply 

evidence measures instead of probabilities, the follow-

ing steps are conducted, which lead to the Dempster-

Shafer Event Tree Analysis DS-ETA. 

  It is assumed that the considered event tree consists 

of bifurcations only; i.e., any symbol within an event 

tree has one input and two outputs (the event “failure” 

or the event “no failure”), see Figure 2. 

 

Initial

event

r2

A2

A1

A2

A1

A2

A1 r1

r3

r4
 

 
Figure 2. Event tree with three bifurcations resulting 
in four sequences, A1 denotes “failure” and A2 “no 
failure” 
 

Every bifurcation i = 1, …, n of an event tree is con-

sidered separately and independently from the n – 1 

other bifurcations. The assigned set of hypotheses 

contains i = {A1, A2, A3}  {“failure”, “no failure”, 

“uncertain”}. Hence, any expert (data source) l has to 

give three values for the basic assignments ml,i(Ak), k 

= 1, 2, 3 of any bifurcation i, representing his/her de-

gree of belief that Ak may occur. Obviously, the un-

certainty of an expert concerning an event A3 does not 

appear in the graphical representation. There is for the 

Expert Assessment Matrix 
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 (41) 

 

with ml,i(A1) + ml,i(A2) + ml,i(A3) = 1. 
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  The Combination Matrix Ci combines each hypothe-

sis or set of hypotheses from two experts and builds 

the cut set of both. Depending on the quantifications 

given, some of the cut sets (here: the cut sets of “fail-

ure” and “no failure”) may not be focal elements be-

fore or afterwards. To avoid mathematical effort, 

those columns and rows were dropped, which are re-

lated to empty cut sets or non-specified statements 

(non-focal elements with a 0% basic assignment). In 

case of two experts and three possible answers, as pre-

sented here, the matrix 
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 (42) 

 

represents the combinations of focal elements exclusively assigned to the i-th event within the tree. The focal sum 

(i) is the sum of all matrix elements Ci. In this case, it is given by 

 

 )()()()(1)( 1,22,12,21,1 AAAA iiii mmmmi   ,                                                                                                (43) 

 

considering the fact that “failure” (A1) and “no failure” (A2) are mutually exclusive. The combined basic assign-

ments mi(Ak) for a “failure”, “no failure”, and “uncertain” are 
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With mi(Ak) as given above, the evidence measures for a “failure” and a “no failure” decision can be calculated by 

 

   )()( 11 AA ii mbel   , 

 

   )()()( 311 AAA iii mmpl   ; (47) 

 

   )()( 22 AA ii mbel   , 

 

   )()()( 322 AAA iii mmpl   . (48) 

 

The next step of modelling applies the basic opera-

tions of interval arithmetic to the given event tree and 

assigns the evidential measures as input variables. The 

addition and multiplication operations are commuta-

tive, associative and sub-distributive. There is for i  

ii, 

   [beli(Ak), pli(Ak)] + [belii(Ak), plii(Ak)] 

 

   = [beli(Ak) + belii(Ak), pli(Ak) + plii(Ak)] , (49) 

 

   [beli(Ak), pli(Ak)]  [belii(Ak), plii(Ak)] 

 

 = [min[beli(Ak)  belii(Ak), beli(Ak)  plii(Ak), 

 

   pli(Ak)  belii(Ak), pli(Ak)  plii(Ak)], 

 

   max[beli(Ak)  belii(Ak), beli(Ak)  plii(Ak), 

 

   pli(Ak)  belii(Ak), pli(Ak)  plii(Ak)],] . (50) 

 

Instead of subtraction, the complements of the evi-

dence measures are applied; this yields 

 

   beli(A1) = 1 – pli(A2) , (51) 

 

   pli(A1) = 1 – beli(A2) . (52) 

 

With the inputs and operations given, the evidence of 

a sequence rj, see Figure 2.,can be calculated easily. 

  As described above, the basic operations of interval 

arithmetic are applied within the DS-ETA. Fortu-

nately, the structure avoids the trouble that the sub-

distributivity of subtraction operations may cause, e.g. 

as known from the Fuzzy Fault Tree Analysis (f-FTA), 

see [17]. 
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4.3. Fault Tree Analysis 

The Fault Tree Analysis (FTA) can model the failure 

of a single event or multiple failures which lead to a 

single system failure denoted as the top event, refer to 

Stephens & Talso [29]. However, the FTA is a top-

down analysis versus the bottom-up approach for the 

Event Tree Analysis; i.e., the method identifies an 

undesirable top event and the contributing elements 

(down to the so-called basic events) that would pre-

cipitate it. The contributors are interconnected with 

the top event, using network paths through Boolean 

logic gates. The following basic steps are used to con-

duct a fault tree analysis: 

 Define the top event of interest. 

 Define the physical and analytical boundaries. 

 Define the tree-top structure. 

 Develop the path of failures for each branch to the 

logical initiating failure, represented by the basic 

event. 

Figure 3 shows a typical fault tree with meshed basic 

events 1, 4, and 7. 

 

74

1

2 3 8 14 9

&

12 15 1 10 13 16 11 17 5 6

1

&

11

&18 20 & 2119

1 1

&

 

Figure 3. Typical fault tree with basic events, gates, 

and top event; the example represents one fault of a 

braking module as applied in railway vehicles 

 

Once the fault tree has been developed to the desired 

degree of detail, the various paths can be evaluated to 

arrive at a probability of occurrence. Cut sets are 

combinations of components failure causing the top 

event. Minimal cut sets are the smallest combinations 

causing the top event. The method is universally ap-

plicable to systems of all kinds, with the following 

ground rules: 

 The top events which are to be analysed, and their 

contributors, must be foreseen. 

 Each of those top events must be analysed indi-

vidually. 

 The contributing factors have been adequately 

identified and explored in sufficient depth. 

The FTA has got several strengths. The procedures 

are well defined and focus on failures. The top-down 

approach requires analysis completeness at each level 

before proceeding. It cannot guarantee identification 

of all failures, but the systematic approach enhances 

the likelihood of completeness. The FTA addresses 

effects of multiple failures by identifying interrela-

tionships between components and identifying mini-

mal failure combinations that cause the system to fail 

(minimal cut sets). The method addresses the effects 

of design, operation, and maintenance. The FTA can 

handle complex systems. It provides a graphical rep-

resentation that helps to understand these complex 

operations and interrelationships between modules 

and components. Finally, FTA provides both qualita-

tive and quantitative information. 

 The method is capable of producing numerical 

statements of the probability of occurrence of undesir-

able events, given probabilities of contributing factors. 

As Stephens & Talso ([29], page 136) claim, this ca-

pability leads to a common abuse: much effort can be 

expended in producing refined numerical statements 

of probability, based on contributing factors whose 

individual probabilities are hardly known and to 

which broad confidence limits should be attached. 

Applying the Dempster-Shafer Theory to FTA can 

help modelling uncertainties with less effort as shown 

by Guth [7]. 

  Guth discusses  = {h1, h2, h3}  {“event occurs”, 

“uncertain”, “event does not occur”}. In the follow-

ing, two events A and B are considered as inputs and 

Z as output of an And or Or gate, respectively. There 

is 

 

   m(A1) = bel(A) , (53) 

 

   m(A2) = pl(A) – bel(A) , (54) 

 

   m(A3) = 1 – pl(A) , (55) 

 

   m(A1) + m(A2) + m(A3) = 1 ; (56) 

 

the same holds for B. Please note that the Guth ap-

proach to the Dempster-Shafer Fault Tree Analysis 

(DS-FTA) considers events where the DS-ETA con-

siders bifurcations. Table 8 shows the (underlying) 

combination of hypotheses with the different results 

given for the And and Or gate. 

 

Table 8. Combination Table 

And A1 A2 A3  Or A1 A2 A3 

B1 

B2 

B3 

h1 
h2 
h3 

h2 
h2 
h3 

h3 

h3 

h3 

 B1 

B2 

B3 

h1 
h1 
h1 

h1 
h2 
h2 

h1 
h2 

h3 

 

Following Step  in Section 0, the combined basic 

assignments are calculated. An And gate yields 
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   m(Z1) = m(A1) m(B1) , (57) 

 

   m(Z2) = m(A1) m(B2) + m(A2) m(B1) 

 

      + m(A2) m(B2) , (58) 

   m(Z3) = m(A1) m(B3) + m(A2) m(B3)+ m(A3) m(B1)  

 

      + m(A3) m(B2) + m(A3) m(B3) 

 

      = m(A1) m(B3) + m(A2) m(B3) + m(A3) . (59) 

 

For an or gate 

 

   m(Z1) = m(A1) m(B1) + m(A1) m(B2) + m(A1) m(B3) 

 

      + m(A2) m(B1) + m(A3) m(B1) 

 

      = m(A1) + m(A2) m(B1) + m(A3) m(B1) , (60) 

 

   m(Z2) = m(A2) m(B2) + m(A2) m(B3) 

 

      + m(A3) m(B2) , (61) 

 

   m(Z3) = m(A3) m(B3) (62) 

 

holds similarly. With that, both evidence measures 

bel(Z) and pl(Z) can now be calculated recursively to 

the equations (53) to (55). 

 Cheng [22] claims that a calculus based on interval 

arithmetic is more concise and efficient in operation 

than the calculus proposed by Guth [7] and presented 

above. However, contrary to an event tree structure, a 

fault tree structure may cause trouble with the sub-

distributivity property of subtraction operations as 

known from the Fuzzy Fault Tree Analysis, see [17]. 

This applies especially if events are meshed within a 

fault tree, see Figure 3. 

 Some authors apply an m: ×  [0, 1] mapping 

instead of the well-known m: 2

  [0, 1] mapping 

which mainly characterises the calculus of the Demp-

ster-Shafer Theory. However, an × rather repre-

sents operations in interval arithmetic, where the 

lower bound and the upper bound are just labelled as 

belief and plausibility, respectively. 

 

4.4. Reliability Centred Maintenance 

Reliability Centred Maintenance (RCM), which was 

first introduced in the aircraft industry, has been used 

with considerable success in the last decades in many 

industrial branches. As described in [23], the RCM 

analysis starts with establishing an expert group and 

initiating the collection of important component and 

system data based on the system documentation. Then 

the system functions are broken down to the desired 

component level. All relevant component information 

should be collected in the form of a modified 

FMECA. The main modification of the FMECA con-

sists of the inclusion of information facilitating the 

choice of the optimum maintenance strategy. This is 

generally performed by an RCM decision diagram. 

Many different decision diagrams are proposed to ap-

ply in an RCM analysis. To illustrate the approach, a 

diagram as given in Figure 4 is discussed, see [28]. 

Note that the given diagram is not necessarily com-

plete or applicable in every context given. 
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Scheduled 
maintenance
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tests

Cond based

maintenance

yes

First line
maintenance

Corrective
maintenance

First line
maint

First line
maint, alone?

Significant
consequences

Other reasons
for prev maint

nonoyesyesno

yes no no yes

yes
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Criticality 1st line maint Detectability Maint strategy

Cond based
maint effective

Increasing
failure rate

 
 
Figure 4. Example of an RCM decision diagram [23] 
 

Supported by the diagram and the integrated ques-

tions, a choice for the best fitting maintenance strat-

egy should be made. Finally, the maintenance pro-

gram should be implemented, and feedback from op-

eration experience and new data should be used to 

improve the program regularly. 

  The choice of the best maintenance strategy is the 

objective of applying RCM; however, reasoning may 

be difficult, due to questions without a definite an-

swer. For example, the question whether or not a 

component is critical could not easily be answered 

with either “yes” or “no”. A Dempster-Shafer based 

alternative makes the avoidance of crisp “yes” or “no” 

decisions possible and leads to weighted recommen-

dations on which maintenance strategy to choose. 

   The application of the DST to RCM (denoted as DS-

RCM [28]) follows the procedure of the DS-ETA as 

described in Section 0. The RCM decision diagram 

corresponds to the event tree, where the decisions are 

the counterparts of the events. Consequently, the deci-

sions “yes” and “no” correspond to the events “fail-

ure” and “no failure”. The Expert Assessment Matrix 

Ml, the Combination Matrix Ci, and the focal sum (i) 

are defined and applied analogously. Additionally, an 

RCM Decision Diagram Matrix D with 
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is defined, which collects the combined basic assign-

ment values (results) of each decision within the RCM 

diagram. Finally, the weighted recommendations on 

all maintenance strategies are listed by the Recom-

mendation Matrix 
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which collects the values of the evidence measures 

belief and plausibility for every strategy. 

 The main advantages of the DS-RCM as against 

the qualitative RCM can be summarised as follows: 

 Experts feel more comfortable giving degrees of 

belief instead of taking “yes” or “no” decisions. It 

might therefore be easier to obtain relevant data for 

the RCM analysis. 

 The DS-RCM approach results in a profile of all 

possible maintenance strategies. Decision making 

based on this profile helps preventing “weak deci-

sions” and may in any case be more comprehen-

sive than relying on a single strategy. 

 In some RCM studies it may be desirable to ana-

lyse modules and not separate components. In 

these cases DS-RCM is especially useful, since it 

does not force a single strategy. 

 As shown in the discussion of the example case, 

the DS-RCM approach helps to reveal possible de-

sign problems and their causes. 

A possible disadvantage of this approach is that some 

experts may find the evidential numbers more compli-

cated than a simple “yes” or “no” decision. A short 

discussion about the nature of these numbers should 

therefore be given as an introduction to an RCM ses-

sion. 

 

5. Conclusions 

The Dempster-Shafter Theory is well-known for its 

usefulness to express uncertain judgments of experts. 

It is shown in this contribution, how to apply the cal-

culus to safety and reliability modelling. Approaches 

to expert judgement; Failure Modes, Effects, and 

Criticality Analysis; Event Tree Analysis; Fault Tree 

Analysis, and Reliability Centred Maintenance are 

discussed. 

  Generally, the Dempster-Shafter Theory adds a new 

flavour to safety and reliability modelling compared 

to probabilistic approaches. The illustration (Section 

0) clearly shows the differences between the Probabil-

ity and the Dempster-Shafer Theory, based on their 

different mappings   [0, 1] versus 2

  [0, 1], see 

Section 0. Probability theory would identify a single 

hypothesis and DST a combination of two to be re-

sponsible for the serious changes of the system con-

sidered. 
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7. Symbols 

A, B set of hypotheses 
bel belief measure 
C Combination Matrix 
cmn commonality measure 
D RCM Decision Diagram Matrix 
h single hypothesis 
i, n index, resp. number of an element 
j sequence index (ETA) or statement index 

(RCM) 
k set or statement index 
l data source index 
M Expert Assessment Matrix 
m basic assignments 
pl plausibility measure 
R Recommendation Matrix 
rj sequence evidence (ETA) or evaluation value of 

the maintenance strategies (RCM) 
(i) focal sum 
Z combined set of hypotheses 
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