PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wymiana masy w przepływie gaz-ciecz w mikroreaktorach

Autorzy
Identyfikatory
Warianty tytułu
EN
Mass transfer in gas-liquid flow in microreactors
Języki publikacji
PL
Abstrakty
PL
Mikroreaktory są nowymi, coraz częściej stosowanymi, aparatami, których rozmiar charakterystyczny zawiera się w przedziale od 10 µm do 1 mm. Mikroreaktory charakteryzują się trzema podstawowymi zaletami, tj. dużym stosunkiem powierzchni do objętości, wysokimi wartościami gradientów stężeń i temperatury oraz możliwością pracy niewielkimi objętościami mediów. Zwłaszcza pierwsza z wymienionych zalet mikroreaktorów sprawia, że są one często stosowane w układach heterofazowych. W badaniach skupiono się na mikroreaktorach z przepływem gaz-ciecz, które dzielą się na aparaty z kanałami zamkniętymi i otwartymi. W obu typach aparatów omówiono elementy ich hydrodynamiki ze szczególnym uwzględnieniem tych aspektów hydrodynamicznych, które najbardziej wpływają na efektywność transportu masy. Główną część pracy poświęcono analizie procesów wymiany masy w przepływie gaz-ciecz w mikroreaktorach. W mikrokanałach zamkniętych z przepływem Taylora gaz-ciecz wyznaczono wartości współczynników wnikania masy w obu fazach. Omówiono udziały oporów po stronie gazu i cieczy w przepływie Taylora w zależności od rozpuszczalności gazów oraz szybkości reakcji chemicznej w fazie ciekłej i stwierdzono zdecydowaną przewagę oporów wnikania masy po stronie cieczy. Uzyskano zbliżone wartości powierzchni międzyfazowej wyznaczone metodą fotograficzną oraz chemiczną Danckwertsa. Potwierdzono takie, że w mikroreaktorach uzyskuje się bardzo wysokie wartości powierzchni międzyfazowej. Są one rzędu 10000 m2/m3. Przeprowadzono symulacje wymiany masy w przepływie Taylora zakładając dyfuzyjny i konwekcyjny ruch fazy ciekłej. Analiza porównania wyników symulacji z wynikami doświadczalnymi wykazała poprawność założenia występowania obu mechanizmów transportu masy. Wybrane wyniki uzyskane dla układów gaz-ciecz odniesiono również do układów ciecz-ciecz. Ostatecznie zaproponowano metodę zastosowania mikroreaktora z kanałami zamkniętymi do wyznaczenia stałej Henry'ego. Dla mikrokanałów otwartych z przepływem gaz-ciecz wykazano, ze korelacje do obliczania współczynników wnikania masy w spływie cieczy po płaskiej ścianie nie powinny być stosowane w mikroreaktorach ze spływającą warstewką cieczy. Wyznaczono doświadczalnie wartości współczynników wnikania masy w obu fazach i wykazano, że w określonych warunkach prowadzenia procesu, opory wnikania w obu fazach mogą być porównywalne. Przeprowadzono także badania dotyczące możliwości występowania efektu konwekcji komórkowej w mikroreaktorze ze spływającą warstewką cieczy. W wyniku tych badań stwierdzono występowanie efektu Marangoniego w warunkach pracy badanego mikroreaktora. Wszystkie, przedstawione w pracy, uzyskane wyniki doświadczalne i teoretyczne wskazują na bardzo ważny element, a mianowicie intensyfikację wymiany masy w mikroreaktorach z przepływem gaz-ciecz.
EN
Microreactors are new, more and more often used, apparatus, whose characteristic size is in the range of 10 µm to 1 mm. They are characterized by three main advantages: a high ratio of interfacial area to volume, high values of temperature and concentration gradients and the ability to work small volumes of media. In particular, the first of these advantages frequently allows to use microreactors in heterogeneous systems. The study focused on microreactors with gas-liquid flow, which are divided into apparatus with open or closed channels. In both types of microreactors, elements of hydrodynamics were discussed with particular emphasis on these aspects of hydrodynamics that affect the efficiency of mass transport most. The main part of the work was devoted to the discussion of mass transfer processes in gas-liquid flow in microreactors. In microchannels with the gas-liquid Taylor flow, the values of mass transfer coefficients in both phases were determined. The influence of gas solubility and chemical reaction rate on contribution of mass transfer resistance in both phases was discussed. A major advantage of the resistance of mass transfer liquid-side was stated. Similar values of the interface area determined by photographic and chemical Danckwerts' method were obtained. It was also confirmed that a high value of interfacial area of the order of 10000 m2/m3 is observed in microrcactors. Simulations of mass transfer in Taylor flow assuming diffusion and convective mechanism of the liquid phase motion were carried out. A comparison of the simulation results with experimental results demonstrated the correctness of assumptions of the occurrence of both mass transfer mechanisms. Some results obtained for gas-liquid systems also referenced liquid-liquid systems. Finally, a method of using a microreactor with closed channels to find Henry's constant value was proposed. In open microchannels with gas-liquid flow, it was indicated that the correlations for the calculation of mass transfer coefficients in liquid flow on vertical plate should not be used in a falling film microreactor (FFMR). The values of mass transfer coefficients in both phases were experimentally determined. It was pointed out that depending on process conditions, the resistance of mass transfer in both phases may be comparable. The possibilities of occurrence of cellular convection effect in the falling film microreactor were also investigated. The existence of the Marangoni effect in our microreactor was observed. All findings presented in the work show that intensification of mass transfer in microreactors with gas-liquid flow is observed.
Rocznik
Strony
3--140
Opis fizyczny
Bibliogr. 143 poz., rys., tab., wykr.
Twórcy
autor
  • Wydział Inżynierii Chemicznej i Procesowej
Bibliografia
  • [1] Alper E., Deckwer W.D., Danckwerts P.V., Comparison of effective interfacial areas with the accrual constant area for gas absorption in a stirred cell, Chem. Eng. Sci., 1980, 35, 1263-1268 .
  • [2] Aubin J., Legendre D., Xuereb C., Hydrodynamics of gas-liquid Taylor flow in rectangular microchannels, Microfluid. Nanofluid., 2011, 12, 355-369.
  • [3] Abiev R.Sh., Simulation of the slug flow of a gas-liquid system in capillaries, Theor. Found. Chem. Eng., 2008, 42, 105-117.
  • [4] Abiev R.Sh., Lavretson I.V., Hydrodynamics of gas-liquid Taylor flow and liquid-solid mass transfer in mini channels: Theory and experiments, Chem. Eng. J., 2011, 176-177, 57-64.
  • [5] Abolhasani M., Singh M., Kumacheva E., Gunter A., Automated microfluidic platform for studies of carbon dioxide dissolution and solubility in physical solvents, Lab Chip, 2012, 12, 1611-1618.
  • [6] Akbar M.K., Plummer D.A., Dhiaasiaan S.M., On gas-liquid two-phase flow regimes in microchannels. Int. J. Multiphase Flow, 2003, 29, 855-865.
  • [7] Al-Rawashdeh M., Hessel V., Lob P., Mevissen K., Shonfeld F., Pseudo 3-D simulations of a falling film microreactor based on realistic channel and film profiles, Chem. Eng. Sci., 2008, 63, 5149-5159.
  • [8] Al-Rawashdeh M., Cantu-Perez A., Ziegenbalg D., Lob P., Gavriilidis A., Hessel V., Shonfeld F., Microstructure-based intensification of falling film microreactor through optimal film selling with realistic profiles and in channel induced mixing, Chem. Eng. J., 2012, 179, 318-329.
  • [9] Anastasiou A.D., Gavriilidis A., Mouza A.A., Study of the hydrodynamic characteristics of free flowing liquid film in open inclined microchannels, Chem. Eng. Sci., 20 13, 101, 744 -754.
  • [10] Aussillous P., Querre D., Quick deposition of a fluid on the wall of a tube, Phys . Fluids, 2000, 12, 2367-2371.
  • [11] Barajas A.M., Panton R.L., The effects of contact angle on two-phase flow in capillary tubes, Int. J. Multiphase Flow, 1993,2, 337 -346 .
  • [12] Barret P.V.L., Gas absorption on a sieve plate, Ph.D. Thesis, University of Cambridge, 1966.
  • [13] Bercic G., Pintar A., The role of gas bubbles and liquid slug lengths on mass transport in the Taylor flow through capillaries, Chem. Eng,. Sci., 1997, 52, 3709-3719.
  • [14] Brauner N., Maron D.M., Identification of the range of 'small diameters' conduits. Regarding two-phase flow pattern transitions, Int. Comm. Heat Mass Transfer, 1992, 19, 29-39.
  • [15] Bretherton F.P., 1961, The motion of long bubbles in tubes, J. Fluid Mech., 1961, 10, 166-188.
  • [16] Buzek J., Konwekcja komórkowa podczas absorpcji z reakcją chemiczną, Politechnika Śląska, Zeszyty Naukowe, Nr 627, Gliwice, 1979 .
  • [17] Buzek J., Some aspects of the mechanism of cellular convection, Chem. Eng. Sci., 1983, 38, 155-160.
  • [18] Buzek J., Podkański J., Warmuziński K., The enhancement of the rate of absorption of CO2 in amine solutions due to the marangoni effect, Energy Convers. Mgmt., 1997, 38, S69-S74.
  • [19] Cantu-Perez A., Al-Rawashdeh M., Hessel V., Gavriilidid A., Reaction modelling of a microstructured falling film reactor incorporating staggered herringbone structures using eddy diffusivity concepts, Chem. Eng. J., 2013, 227, 34-41.
  • [20] Chambers R.D., Holling D., Spink R.C.H., Sandford G., Elemental fluorine Part 13. Gas-liquid thin film microreactors for selective direct fluorination, Lab Chip, 2001, 1, 132-137.
  • [21] Chasanis P., Lautenschleger A., Kenig E .Y., Numerical investigation of carbon dioxide absorption in a falling-film micro-contactor, Chem. Eng. Sci., 2010, 65, 1125-1133.
  • [22] Chisholm D., A theoretical basis for the Lockhart-Martinelli correlation for two-phase flow, Int. J. Heat Mass Transfer, 1967, 10, 1767-1778.
  • [23] Ciborowski J., Inżynieria Procesowa, WNT, Warszawa, 1973.
  • [24] Commenge J.M., Obein T., Obnin G., Framboisier X., Rode S., Schanen V., Pitiot P., Matlosz M., Gas-phase residence time distribution in a falling-film microreactor, Chem. Eng. Sci., 2006 ,61, 597-604.
  • [25] Commenge J. M., Obein T., Framboisier X., Rode S., Pitiot P., Matlosz M., Gas-side mass-transfer measurements in a falling-film microreactor, Chem. Eng. Sci., 2011, 66, 1212-1218.
  • [26] Cygański, P., Sobieszuk P., Pohorecki R., Pressure drop in two-phase gas-liquid (Taylor) now in microreactors, Chem. Proc. Eng., 2012, 33, 369-384 .
  • [27] Danckwerts P.V., Shanna M.M., The absorption of carbon dioxide into solutions of alkalis and amines (with some notes on hydrogen sulphide and carbonyl sulphide), The Chemical Engineering, 1966, 10, CE244-CI3280.
  • [28] Danckwerts P.V., Mc Neil K.M., The absorption of carbon dioxide into aqueous amine solutions and the effects of catalysis, Trans. Instn., Engrs., 1967, 45, T32-T49.
  • [29] Danckwerts P.V., Gas-Liquid Reactions, Mc Graw-Hill, New York, 1970.
  • [30] Dessimoz A.L., Cavin L., Renken A., Kiwi-Minsker L., Liquid-liquid two-phase flow patterns and mass transfer characteristics in rectangular glass microreactors, Chem. Eng. Sci., 2008, 63, 4035-4044.
  • [31] Dietrich N., Loubiere K., Jimenez M., Hebrard G., Gourdon C., A new direct technique for visualizing and measuring gas-liquid mass transfer around bubbles moving in a straight millimetric square channel, Chem. Eng. Sci., 2013, 100, 172-182.
  • [32] Dziubiński M., Prywer J., Mechanika płynów dwufazowych, WNT, Warszawa, 2009, 475-486 .
  • [33] Edvinsson R.K., Cybulski A., A comparison between the monolithic reactor and trickle-bed reactor for liquid-phase hydrogenations, Catalysis Today, 1995, 24, 173-179.
  • [34] Ehrfeld W., Hessel V., Lowe H., Microreactors, Wiley-WCH, Weinheim, 2000.
  • [35] Ehrich H., Linke D., Morgenschweis K., Baerns M., Jahnish K., Application of microstructured reactor technology for the photochemical chlorination of alkyl aromatics. Chimia, 2002,56,647-653.
  • [36] Evans G.M., Biń A.K., Machniewski P.M., Performance of confined plunging liquid jet bubble column as a gas-liquid reactor, Chem. Eng. Sci., 2001, 56, 1151-1157.
  • [37] Fogg P.G.T., Gerrard W., Solubility of gases in liquids, Wiley, Chichester, 1991, 241-243.
  • [38] Fries D.M., Waelchli S., von Rohr P.R., Gas-liquid two-phase flow in meandering microchannel, Chem. Eng. J., 2008, 135S, SJ7-S45.
  • [39] Garstecki P., Fuerstman M.J., Stone H.A., Whitesides G.M. Formation of droplets and bubbles in a microfluidic T-junction- scaling and mechanism of break-up, Lab Chip, 200 6, 6, 437-446.
  • [40] Ghaini A., Kashid M.N., Agar D.W., Effective interfacial area for mass transfer in the liquid-liquid slug flow capillary microreactors, Chem. Eng. Proc.. 2010, 49, 358-366.
  • [41] Han Y., Shikazano N., Measurement of the liquid film thickness in micro tube slug flow, Int. J. Heat fluid Flow, 2009a, 30, 842-853.
  • [42] Han Y., Shikazano N., Measurement of liquid film thickness in micro square channel, Int. J. Muliphase Flow, 2009b, 35, 896-903.
  • [43] Hamed H.S., Owen B.S., The physical chemistry of electrolytic solutions, Reinhold Publ. Co, New York, 1950.
  • [44] Hessel V., Angeli P., Gavriilidis A., Lowe H., Gas-liquid and gas-liquid-solid microstructured reactors: contacting principles and applications, Ind . Eng. Chem. Res., 2005, 44, 9750-9769.
  • [45] Higbie R., The rate of absorption of a pure gas into a still liquid during short periods of exposure, Trans. AlChE, 1935, 31, 365-389.
  • [46] Hikita H., Ishikawa H., Uku K., Murakami T., Diffusivities of mono-, di-, and triethanoloamines in aqueous solutions, J. Chem. Eng. Data, 1980, 25, 324-325.
  • [47] Ho C.-D., Chang H., Chen H.-J., Chang C.-L., Li H.-H., Chang Y.-Y., CFD simulation of two-phase flow for falling film microreactor, Int. J. Heat Mass Trans., 2011, 54, 3740-3748.
  • [48] Ho F.C. K., Hummel R.L., Average velocity distributions within falling liquid, Chem. Eng. Sci., 1970, 25, 1225-1237.
  • [49] Hobler T., Dyfuzyjny ruch masy i absorbery, WNT, Warszawa, 1962.
  • [50] Hobler T., Minimum zraszania powierzchni, Chemia Stosowana, 1964, 28, 145-159.
  • [51] Hoffman A., Maćkowiak J.F., Górak A., Haas M., Loning J.- M., Runowski T., Hallenberger K., Standardization of mass transfer measurements. A basic for description of absorption processes, ChERD, 2007, 85, 40-49.
  • [52] Ilnicki F., Sobieszuk P., Pohorecki P., Simulation of the two phase flow in a closed microchannel, Chem. Proc. Eng., 2009, 30, 205-216.
  • [53] Jahnish K., Dingerdissen U., Photochemical generation and [4 +2 ]-cycloaddition of singlet oxygen in a falling film microreactor, Chem. Eng. Tech., 2005, 28, 426-427.
  • [54] Janovic J., Zhou W., Rebrov E.Y., Nijhuis T.A., Liquid-liquid slug flow: Hydrodynamics and pressure drop, Chem. Eng. Sci., 2011, 66, 42-54.
  • [55] Jayawardena S.S., Balakotaiah Y., Witte L., Flow pattern transition maps for microgravity two-phase flows, AIChE J., 1997, 43, 1637-1640.
  • [56] Jaszczak-Skorupska M., Wronski S., Badanie spływu cienkich warstw cieczy newtonowskiej w kanale otwartym o przekroju prostokątnym, Inż. Chem., 1974, IV, 1, 53-67.
  • [57] Joosten G.E.H., Danckwerts P.V., Chemical reaction and effective interfacial areas in gas absorption, Chem. Eng. Sci., 1973, 28, 453-461.
  • [58] Kashid M.N., Renken A., Kiwi-Minsker L., Gas-liquid and liquid-liquid mass transfer in micro-structured reactors. Chem. Eng. Sci., 2011, 66, 3876-3897.
  • [59] Kashid M.N., Gupta A., Renken A., Kiwi-Minsker L., Numbering-up and mass transfer studies of liquid-liquid two-phase microstructured reactors, Chem. Eng. J., 2010, 158, 233-240.
  • [60] Kashid M., Kiwi-Minsker L., Quantitative prediction of flow patterns in liquid-liquid flow in micro-capillaries, Chem. Eng. Proc., 50, 2011, 972-978.
  • [61] Kashid M.N., Kowaliński W., Renken A., Bałdyga J., Kiwi-Minsker L., Analytical method to predict two-phase flow pattern in horizontal micro-capillaries, Chem. Eng. Sci., 2012, 74, 219-232.
  • [62] Kawahara A., Chung P. M.-Y., Kawaji M., Investigation of two-phase flow pattern. Void fraction and pressure drop in microchannel, Int. J . Multiph. Flow, 2002, 28, 1411-1435.
  • [63] Kockmann N., Transport phenomena in micro process engineering, Springer, Berlin, 2008.
  • [64] Kreutzer M.T., Du P., Heiszwolf J.J. , Kapteijn F., Moulijn J.A., Mass transfer characteristics of three-phase monolith reactors, Chem. Eng. Sci., 2001, 56, 6015-6023.
  • [65] Kreutzer M.T., Kapteijn F., Moulijn J.A., Heiszwolf J.J., Multiphase monolith reactors: Chemical reaction engineering of segmented flow in microchannels, Chem. Eng. Sci., 2005, 60, 5895-5916.
  • [66] Lam K.F., Sorensen E., Gavriilidis A., Review on gas-liquid separations in microchannel devices, ChERD, 2013, 91, 1941-1953.
  • [67] Liu H.. Vandu C.O , Krishna R., Hydrodynamics of Taylor flow in vertical capillaries: flow regimes, bubble me velocity, liquid slug length and pressure drop, Ind. Eng. Chem. Res., 2005, 44, 4884-4897.
  • [68] Lefortier S.G.R., Hamersma P.J., Bardow A., Kreutzer M.T., Rapid microfluidic screening of CO2 solubility and diffusion in pure and mixed solvents, Lab Chip, 2012, 12, 3387-3391.
  • [69] Lowe C.K., Perfluorochemicals respiratory gas carriers: benefits to cell culture systems, J. Fluorine Chem., 2002, 118, 19-26.
  • [70] Malecha K., Golonka L.J., Bałdyga J., Jasińska M., Sobieszuk P. Serpentine microfluidic mixer made in LTCC, Sensors Actuators B, 2009, 143, 400-413.
  • [71] Mikielewicz J., Moszyński J.R., Minimum thickness of a liquid film flowing vertically down a solid surface, Int. J. Heal Mass Transfer, 1976, 19, 771-776.
  • [72] Moniuk W., Absorpcyjne metody oczyszczania gazów syntezowych i odlotowych ze składników kwaśnych, Inż. Chem. Proc., 2006, 27, 9-34.
  • [73] Monnier H., Mhiri N., Falk L., Falling liquid film stability in microgas/liquid absorption, Chem. Eng. Proc., 2010, 49, 953-957.
  • [74] Nassar R., Hu J., Palmer J., Dai W., Modeling of cyclohexene hydrogenation and dehydrogenation reactions in a continuous-flow microreactor, Catal. Today, 2007, 120, 121-124.
  • [75] Onea A., Worner M., Cacuci D.G, A qualitative computational study of mass transfer in upwards bubble train flow through square and rectangular mini-channels. Chem. Eng. Sci. 2009, 64, 1416-1435.
  • [76] Oriol J., Leclerc J.P., Berne P., Gousscau G., Jallut C., Tochon P., Clement P., Characterisation of two-phase flow regimes in gorizontal tubes using 81m Kr tracer experiments, Applied Radiation Isotopes, 2008, 66, 1363-1370.
  • [77] Pilarek M., Szewczyk K.W., Effects of perfluorinated oxygen carrier application in yeast fungi and plant cell suspension cultures, Bio. Eng. J., 2008, 4, 38-42.
  • [78] Pilarek M., Glazyrina J., Neubauer P., Enhansed growth and recombinant protein production of Escherichia coli by a perfluorinated oxygen carrier in miniaturized fed-batch cultures, Microb. Cell Fact., 2011, 10, art. no. 50.
  • [79] Pohorecki R., The absorption of CO2 m carbonate-bicarbonate buffer solutions containing hypo-chlorite catalyst on a sieve plate, Chem. Eng. Sci., 1968, 23, 1447-1451.
  • [80] Pohorecki R., Wroński S., Kinetyka i termodynamika procesów inżynierii chemicznej, WNT, Warszawa, 1977.
  • [81] Pohorecki R., Moniuk W., Kinetics of reaction between carbon dioxide and hydroxyl ions in aqueous electrolyte solutions, Chem. Eng. Sci., 1988a, 43, 1677-1684.
  • [82] Pohorecki R., W. Moniuk W., Plate efficiency in the process of absorption with chemical reaction-experiments and example calculations, The Chem. Eng. J., 1988b, 39, 37-46.
  • [83] Pohorecki R., Moniuk W., Viscosity and density of sodium and potassium alkaline solutions, Hung. J. Ind. Chem., 1991, 19, 175-178.
  • [84] Pohorecki R., Sobieszuk P., Kula K., Moniuk W., Zieliński M., Reżimy hydrodynamiczne mikroreaktora gaz-ciecz, Int. Apar. Chem., 2006, nr 6, 196-197.
  • [85] Pohorecki R., Effectiveness of interfacial area for mass transfer in two-phase flow in microreactors, Chem. Eng. Sci., 2007, 62, 6495-6498.
  • [86] Pohorecki R., Kula K., A simple mechanism of bubble and slug formation in Taylor flow in microchannels, CHERD, 2008, 86 ,997-1001.
  • [87] Pohorecki R., Sobieszuk P., Kula K., Moniuk W., Zieliński M., Cygański P., Gawiński P., Hydrodynamic regimes of gas-liquid flow in a microreactor channel, Chem. Eng. J., 2008, 135S, S185-S190.
  • [88] Porter K.E., The effect of contact-time distribution on gas absorption with chemical reaction, Trans, Inst. Chem. Eng., 1966, 44 , T25-T36.
  • [89] Rezkallah K.S., Weber number based flow-pattern maps for liquid-gas flow at microgravity, Int. J. Multiph. Flow, 1996, 22, 1265- 1270 .
  • [90] Riess J.G., Perfluorocarbon-based oxygen delivery. Artif. Cells and Blood Substit. Immobil. Biotechnol., 2006, 34, 567-580.
  • [91] Qian D., Lawal A., Numerical study on gas and liquid slugs for Taylor flow in a T-junction micro-channel, Chem. Eng. Sci., 2006, 61, 7609-7625.
  • [92] Rząsa M.R., Identyfikacja przepływu pęcherzów powietrza za pomocą tomografii optycznej - przegląd metod, Int. Apar. Chem., 2010, nr 2, 107-108.
  • [93] Saisorn S., Wongwises S., The effects of channel diameter on flow pattern, void fraction and pressure drop of two-phase air-water flow in circular micro-channels, Exp. Therm. Fluid. Sci., 2010, 34, 454-462.
  • [94] Sawistowski H., Surface-tension-induced interfacial convection and its effect on rates of mass transfer, Chemie Ing. Techn., 1973, 45, 1093-1140.
  • [95] Sharma M.M., Danckwerts P.V., Chemical methods of measuring interfacial area and mass transfer coefficients in two-fluid systems, British Chem. Eng., 1970, 15, 522-528.
  • [96] Shao N., Gavriilid is A., Angeli P., Mass transfer during Taylor flow in microchannels with and without chemical reaction, Chem. Eng. J ., 2010, 160, 873-881.
  • [97] Sherwood K.S., Pigford R.L., Wilke C.R., Mass Transfer, Me Graw- Hill, New York 1975.
  • [98] Schwanz L.W., Princen H.M., Kiss A.D., On the motionof bubbles in capillary tubes, J. Fluid Mech., 1986, 172, 259-275.
  • [99] Snijder E.D., te Riele M.J.M., Versteeg G.F., van Swaaij W.P.M., Diffusion coefficients of several alkonolamine solutions, J. Chem. Eng. Data, 1993, 38, 475-480 .
  • [100] Sobieszuk P., Cygański P., Pohorecki R., Volumetric mass transfer coefficient in a gas-liquid microreactor, Chem. Proc. Eng., 2008, 29, 651-661.
  • [101] Sobieszuk P., Cygański P., Pohorecki R., Bubble lengths in the gas-liquid Taylor flow in microchannels, ChERD, 2010a, 88, 263-269.
  • [102] Sobieszuk P., Pohorecki R., Gas-side mass transfer coefficients in a falling film microreactor, Chem. Eng. Proc., 2010b, 49, 820-824.
  • [103] Sobieszuk P., Pohorecki R., Cygański P. Kraut M., Olschewski F., Marangoni effect in a falling film microreactor, Chem. Eng. J., 2010c, 164, 10-15.
  • [104] Sobieszuk P., Pohorecki R., Cygański P., Grzelka J., Determination of the interfacial area and mass transfer coefficients in the Taylor gas-liquid flow in a microchannel, Chem. Eng. Sci., 2011, 66, 6048-6056.
  • [105] Sobieszuk P., Aubin J., Pohorecki R., Hydrodynamics and mass transfer in gas-liquid flows in microreactors, Chem. Eng. Tech., 2012a, 35, 1346-1355.
  • [106] Sobieszuk P., Ilnicki F., Cygański P., Pohorecki R., Współczynniki wnikania masy po stronie gazu podczas przepływu Taylora w mikroreaktorze, 2012b, Materiały Konferencyjne: III Ogólnopolskie Sympozjum Reaktory Wielofazowe i Wielofunkcyjne dla Procesów Chemicznych i Ochrony Środowiska, 10-12.10.2012, Serock, Poland, 189-194, ISBN 978-83-906658-9-4.
  • [107] Sobieszuk P., Analiza wykorzystania powierzchni międzyfazowej w przepływie Taylora w mikrokanałach gaz-ciecz i ciecz-ciecz, Inż. Ap. Chem., 2012c, 6, 383-384.
  • [108] Sobieszuk P., Pilarek M., Absorption of CO2 into perfluorinated gas carrier in the Taylor gas-liquid flow in a microchannel system, Chem. Proc. Eng., 2012d, 33, 595-602.
  • [109] Sobieszuk P., Modelowanie i badania doświadczalne wymiany masy w układach ciecz-gaz w przepływie Taylora w mikroreaktorze, Inż. Ap. Chem., 2013, 5, 473-474.
  • [110] Sobieszuk P., Ilnicki F., Pohorecki R., Contribution of liquid- and gas-side mass transfer coefficients to overall mass transfer coefficient in Taylor flow in a microreactor. Chem. Proc. Eng., 2014, 35, 35-45.
  • [111] Sowiński J ., Krawczyk M., Dziubiński M., Comparison of experimental data and numerical simulations of two-phase flow pattern in vertical minichannel, Chem. Proc. Eng., 2012, 33, 63-70.
  • [112] Su R., Cubaud T., Dissolution of carbon dioxide bubbles and microfluidic multiphase flows, Lab Chip, 2011, 11, 2924-2928.
  • [113] Tang J., Zhang X., Cai W., Wang F., Liquid-liquid extraction based on droplet flow in a vertical microchannel, Exp. Thermal Fluid Sci., 2013, 49, 185-192.
  • [114] Taylor G.J., Deposition of a viscous fluid on the wall of a tube, J. Fluid Mech., 1961, 10, 161-165.
  • [115] Thulasidas T.C., Abraham M.A., Cerro R.L., Flow patterns in liquid slugs during bubble-train flow inside capillaries, Chem. Eng. Sci. 1997, 52, 2947-2962.
  • [116] Triplet K.A., Ghiaasiaan S.M., Abdei-Khalik S.I., Sadowski D.L., Gas-liquid flow in microchannels Part I: two-phase flow patterns, Int. J.Multiphase Flow, 1999, 25, 377-394.
  • [117] Truszkowska G., Analiza i interpretacja map rodzaju przepływu w mikroreaktorach, Praca Magisterska WIChiP PW, Warszawa, 2008.
  • [118] Tsaoulidis D., Dore V., Angeli P., Plechkova N.V., Seddon K.R., Flow patterns and pressure drop of ionic liquid-water two-phase flows in microchannels, Int. J. Multiphase Flow, 2013, 54, 1-10.
  • [119] Ueda T., Tanaka H., Measurements of velocity. temperature and velocity fluctuation distributions in falling liquid films, Int. J. Multiphase Flow, 1975, 2, 261-272.
  • [120] Vaillancourt M.-P., Hassan I. G., Pehlivan K.K., Two-phase flow regime transitions in microchannels, 5th Int. Conf. Multi ph. Flow, Yokohama, Japan, 30.05.-04.06.2004, Paper No. 181.
  • [121] van Baten J.M., Krishna R., CFD simulations of mass transfer from Taylor bubbles rising circular capillaries, Chem. Eng. Sci., 2004, 59, 2535-2545.
  • [122] van Baten J.M., Krishna R., CFD simulations of wall mass transfer for Taylor flow in circular capillaries, Chem. Eng. Sci., 2005, 60, 1117-1126.
  • [123] van Bolen J.M, Krishna R., Corrigendum to "CFD Simulations of mass transfer from Taylor bubbles rising in circular capillaries" [Chem. Eng. Sci. 59 (2004) 2535-2545], Chem. Eng. Sci., 2011, 66,4941.
  • [124] van Elk E.P., Knaap M.C., Versteeg G.F., Application of the penetration theory for gas-liquid mass transfer without liquid bulk, ChERD, 2007, 85, 516- 524.
  • [125] Vandu C.O., Liu R., Krishna R., Mass transfer from Taylor bubbles rising in single capillaries. Chem. Eng. Sci., 2005,60, 6430-6437.
  • [126] Vankayala B.K., Loeb P., Hessel V., Menges G., Hoffinan C., Meztke D., Krtschil U., Kost H.-J., Scale-up of process intensifying falling film microreactors to pilot production scale, Int. J. Chem. Reactor Eng., 2007, 5, A91.
  • [127] Waelchli S., von Rohr R., Two-phase flow characteristics in gas-liquid microreactors, Int. J. Multiphase Flow, 2006, 32, 791-806.
  • [128] Warder R.B., Alkalimetry with phenol phthalein as indicator, Am. Chem. J., 1881, 3, 55-58, również s. 232.
  • [129] Warmuzinski K., Model matematyczny konwekcji kom6rkowej podczas chemisorpcji, Inż. Chem. Proc., 1987, 2, 20 1-218.
  • [130] Warmuziński K., Buzek J., Podkański J., Marangoni instability during absorption accompanied by chemical reaction, Chem. Eng. J., 1995, 58, 151-160.
  • [131] Warmuziński K., Tańczyk M., Wpływ konwekcji komórkowej na szybkość absorpcji ditlenku węgla w roztworach amin, Przem. Chem., 2012, 91, 1442-1444.
  • [132] Wielhorski Y., Abdelwahed M.A.B., Bizet L., Breard J., Wetting effect on shapes formed in a cylindrical T-junction, Chem. Eng. Sci., 2012, 84, 100-106.
  • [133] Wroński S., Pohorecki R., Siwiński J., Przykłady obliczeń z termodynamiki i kinetyki procesów inżynierii chemicznej, WNT, Warszawa 1979.
  • [134] Xie T., Zeng C., Wang C., Zhang L., Preparation of methyl ester sulfonates based on sulfonation in a falling film microreactor from hydrogenated palm oil methyl esters with gaseous SO3 Ind. Eng. Chem. Res., 2013, 52, 3714-3722.
  • [135] Xu B., Cai W., Liu X., Zhang X., Mass transfer behavior of liquid-liquid slug flow in circular cross-section microchannel, ChERD, 2013, 91, 1203-1211.
  • [136] Yeong K.K., Gavriilidis A., Zapf R., Hessel V., Catalyst preparation and deactivation issues for nitrobenzene hydrogenation in a microstructured falling reactor, Catal. Today, 2003, 81, 641-651.
  • [137] Yeong K.K., Gavriilidis A., Zapf R., Hessel V., Experimental studies of nitrobenzene hydrogenation in a microstructured falling film reactor, Chem. Eng. Sci., 2004, 59, 3491-3494.
  • [138] Yeong K.K., Gavriilidis A., Zapf R., Kost H.J., Hessel V., Boyde A., Characterization of liquid film in a microstructured falling film reactor using laser scanning confocal microscopy, Exp. Therm. Fluid. Sci., 2006,30, 463-472.
  • [139] Yue J., Chen G., Yuan Q., Luo L., Gonthier Y., Hydrodynamics and mass transfer characteristics in gas-liquid flow through a rectangular microchannel, Chem. Eng. Sci., 2007, 62, 2096-2108.
  • [140] Yue J., Luo L., Gonthier Y., Chen G., Yuan Q., An experimental study of air-water Taylor flow and mass transfer inside square microchannels, Chem. Eng. Sci., 2009, 64, 3697-3708.
  • [141] Zaloha P., Kristal J., Jiricny V., Volkel N., Xuereb C., Aubin J., Characteristics of liquid slugs in gas-liquid Taylor flow in microchannels, Chem. Eng. Sci., 2012, 68, 640-649.
  • [142] Zanfir M., Gavriilidis A., Hessel V., Carbon dioxide absorption in a falling film microstructured reactor: experiments and modeling, Ind. Eng. Chem. Res., 2005, 44, 1742-1751.
  • [143] Zhang H., Chen G., Yuan Q., Hydrodynamics and mass transfer of gas-liquid flaw in a falling film microreactor, AIChE J., 2009, 55, 1110-1120.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b56119b9-9819-4611-af73-1819e92334c6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.