PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fault-tolerant control for three-phase three-level T-type inverters with a redundant leg

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Three-level T-type inverters have lower total harmonic distortion in output voltage, higher power density and lower voltage stress of power switches compared with conventional two-level inverters and have been widely used in applications with a wide-power range. Reliability improvement is particularly important for the T-type inverters because of the increased number of power switches and high system complexity. This paper proposes a fault-tolerant topology, which is constructed by adding a redundant leg including halfbridge switches and neutral-point switches connected between the DC bus capacitors and the DC-link midpoint of the conventional T-type inverter. In addition, an after-fault control strategy is proposed based on the results of a fault diagnosis method using bridge voltage. The fault-tolerant control of the open-circuit fault of the power switches and the phase-leg fault can both be achieved by the proposed method. Experimental results are given to verify that the proposed fault-tolerant three-level T-type inverter can output the full voltage level and power during the fault-tolerant operation based on the proposed control strategy.
Rocznik
Strony
931--948
Opis fizyczny
Bibliogr. 24 poz., rys., tab., wz.
Twórcy
  • College of Information and Intelligence Engineering, Zhejiang Wanli University, No. 8, South Qian Hu Road, Ningbo, Zhejiang, China 315100
autor
  • College of Information and Intelligence Engineering, Zhejiang Wanli University, No. 8, South Qian Hu Road, Ningbo, Zhejiang, China 315100
Bibliografia
  • [1] Krishnaveni S., Rajini V., Cascaded boost converter-based high-voltage pulse generator for pulsed electric field applications, Archives of Electrical Engineering, vol. 70, no. 3, pp. 631–641 (2021), DOI: 10.24425/aee.2021.137578.
  • [2] Wang Z., Wu Y., Mahmud M.H., Zhao Z., Zhao Y., Mantooth H.A., Design and validation of a 250-kW all-silicon carbide high-density three-level T-type inverter, IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 8, no. 1, pp. 578–588 (2020), DOI: 10.1109/JESTPE.2019.2951625.
  • [3] Chen D., Liu Y., Zhang S., Fault diagnosis of T-type three-level inverter based on bridge voltages, Archives of Electrical Engineering, vol. 70, no. 1, pp. 73–87 (2021), DOI: 10.24425/aee.2021.136053.
  • [4] Wang D., Wang M., Shen Y., Li Q., Liang X., Online feedback dead time compensation strategy for three-level T-type inverters, IEEE Transactions on Industrial Electronics, vol. 67, no. 9, pp. 7260–7268 (2020), DOI: 10.1109/TIE.2019.2942558.
  • [5] Nabae A., Takahashi I., Akagi H., A new neutral-point-clamped PWM inverter, IEEE Transactions on Industry Applications, vol. IA-17, no. 5, pp. 518–523 (1981), DOI: 10.1109/TIA.1981.4503992.
  • [6] Schweizer M., Kolar J.W., Design and implementation of a highly efficient three-level T-type converter for low-voltage applications, IEEE Transactions on Power Electronics, vol. 28, no. 2, pp. 899–907 (2013), DOI: 10.1109/TPEL.2012.2203151.
  • [7] Wang Z., Zhao Z., Uddin M.H., Zhao Y., Current ripple analysis and prediction for three-level T-type converters, 2018 IEEE Energy Conversion Congress and Exposition, Portland, OR, USA, pp. 7251–7257 (2018).
  • [8] Mirafzal B., Survey of Fault-Tolerance Techniques for Three-Phase Voltage Source Inverters, IEEE Transactions on Industrial Electronics, vol. 61, no. 10, pp. 5192–5202 (2014), DOI: 10.1109/TIE.2014.2301712.
  • [9] Wang Z., Wang X., Wang Y., Chen J., Cheng M., Fault tolerant control of multiphase multilevel motor drives - technical review, Chinese Journal of Electrical Engineering, vol. 3, no. 2, pp. 76–86 (2017), DOI: 10.23919/CJEE.2017.8048414.
  • [10] He J., Yang Q., Wang Z., On-line fault diagnosis and fault-tolerant operation of modular multilevel converters — A comprehensive review, CES Transactions on Electrical Machines and Systems, vol. 4, no. 4, pp. 360–372 (2020), DOI: 10.30941/CESTEMS.2020.00043.
  • [11] Choi U., Lee K., Blaabjerg F., Diagnosis and tolerant strategy of an open-switch fault for T-type three-level inverter systems, IEEE Transactions on Industry Applications, vol. 50, no. 1, pp. 495–508 (2014), DOI: 10.1109/TIA.2013.2269531.
  • [12] Choi U., Blaabjerg F., Lee K., Reliability improvement of a T-type three-level inverter with fault-tolerant control strategy, IEEE Transactions on Power Electronics, vol. 30, no. 5, pp. 2660–2673 (2015), DOI: 10.1109/TPEL.2014.2325891.
  • [13] Chen J., Zhang C., Chen A., Xing X., Fault-tolerant control Strategies for T-type three-level inverters considering neutral-point voltage oscillations, IEEE Transactions on Industrial Electronics, vol. 66, no. 4, pp. 2837–2846 (2019), DOI: 10.1109/TIE.2018.2842731.
  • [14] Chen J., Chen A., Zhang C., Li K., A model predictive control based fault-tolerant control strategy for T-type three-level inverters, 2017 IEEE Energy Conversion Congress and Exposition, Cincinnati, OH, USA, pp. 2839–2845 (2017).
  • [15] Do D., Nguyen M., Quach T., Tran V., Blaabjerg F., Vilathgamuwa D.M., A PWM scheme for a fault-tolerant three-level quasi-switched boost T-type inverter, IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 8, no. 3, pp. 3029–3040 (2020), DOI: 10.1109/JESTPE.2019.2922687.
  • [16] He J., Weise N., Wei L., Demerdash N.A.O., A fault-tolerant topology of T-Type NPC inverter with increased thermal overload capability, 2016 IEEE Applied Power Electronics Conference and Exposition, Long Beach, CA, USA, pp. 1065–1070 (2016).
  • [17] He J., Katebi R., Weise N., Demerdash N.A.O, Wei L., A fault-tolerant T-type multilevel inverter topology with increased overload capability and soft-switching characteristics, IEEE Transactions on Industry Applications, vol. 53, no. 3, pp. 2826–2839 (2017), DOI: 10.1109/TIA.2017.2665630.
  • [18] Chao K., Chang L., Xu F., Three-level T-type inverter fault Diagnosis and tolerant control using single-phase line voltage, IEEE Access, vol. 8, pp. 44075–44086 (2020), DOI: 10.1109/AC-CESS.2020.2978141.
  • [19] Xu S., Zhang J., Hang J., Investigation of a fault-tolerant three-level T-type inverter system, IEEE Transactions on Industry Applications, vol. 53, no. 5, pp. 4613–4623 (2017), DOI: 10.1109/TIA.2017.2697844.
  • [20] Zhang W., Liu G., Xu D., Hawke J., Garg P., Enjeti P., A fault-tolerant T-type three-level inverter system, 2014 IEEE Applied Power Electronics Conference and Exposition, Fort Worth, TX, USA, pp. 274–280 (2014).
  • [21] Wang B., Li Z., Bai Z., Krein P.T., Ma H., A redundant unit to form T-type three-level inverters tolerant of IGBT open-circuit faults in multiple legs, IEEE Transactions on Power Electronics, vol. 35, no. 1, pp. 924–939 (2020), DOI: 10.1109/TPEL.2019.2912177.
  • [22] Choi U., Blaabjerg F., A novel active T-type three-level converter with open-circuit fault-tolerant control, 2015 IEEE Energy Conversion Congress and Exposition, Montreal, QC, Canada, pp. 4765–4772 (2015).
  • [23] Wang X., Wang Z., Cheng M., Hu Y., Remedial strategies of T-NPC three-level asymmetric six-phase PMSM drives based on SVM-DTC, IEEE Transactions on Industrial Electronics, vol. 64, no. 9, pp. 6841–6853 (2017), DOI: 10.1109/TIE.2017.2682796.
  • [24] Wang X., Wang Z., Xu Z., He J., Zhao W., Diagnosis and tolerance of common electrical faults in T-type three-level inverters fed dual three-phase PMSM drives, IEEE Transactions on Power Electronics, vol. 35, no. 2, pp. 1753–1769 (2020), DOI: 10.1109/TPEL.2019.2920400.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b55b2bba-6b01-4f37-82b3-6a1f2ed13cbf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.