PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synthesis, sintering, specific heat and magnetism of Eu3S4 by low-temperature CS2-gas sulfurization of Eu2O3 nanospheres

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Single-phase Eu3S4 was obtained via CS2 gas sulfurization of Eu2O3 nanospheres at 773 K for longer than 0.5 h. The primary particle size of Eu3S4 became larger than that of Eu2O3 during the sulfurization process. Pure synthetic Eu3S4 powders were unstable and transformed to EuS at 873 K under vacuum. Eu3S4 compacts were sintered in temperature range of 773 K to 1173 K and they transformed to EuS at 1473 K during spark plasma sintering. Specific heat of sintered Eu3S4did not show an anomalous behavior in the range of 2 K to 50 K. The magnetic susceptibility of polycrystalline Eu3S4 followed a Curie-Weiss law from 2 K to 300 K. Magnetization of polycrystalline Eu3S4 was larger than that of single crystal Eu3S4 when the magnetic field was less than 3.5 kOe.
Wydawca
Rocznik
Strony
616--622
Opis fizyczny
Bibliogr. 21 poz., rys.
Twórcy
autor
  • School of Mechanical Engineering, Shanghai Dian Ji University, Shanghai 201306, China
  • Department of Materials Science and Engineering, Muroran Institute of Technology, Muroran 050-8585, Japan
autor
  • Department of Materials Science and Engineering, Muroran Institute of Technology, Muroran 050-8585, Japan
autor
  • Department of Materials Science and Engineering, Muroran Institute of Technology, Muroran 050-8585, Japan
Bibliografia
  • [1] Nemkovski K.S., Kozlenko D.P., Alekseev P.A., Mignot J.-M., Menushenkov A.P., Yaroslavtsev A.A., Clementyev E.S., Ivanov A.S., Rols S., Klobes B., Phys. Rev. B, 94 (2016), 195101.
  • [2] Haque Z., Thakur G.S., Parthasarathy R., Gerke B., Block T., Heletta L., Pöttgen R., Joshi A.G., Selvan G.K., Arumugam S., Inorg. Chem., 56 (2017), 3182.
  • [3] Ramakrishnan T., Annu. Rev. Conden. Ma. P., 7 (2016), 1.
  • [4] Li L., Hirai S., Nakamura E., Yuan H., MRS Adv., (2016), 1.
  • [5] Luo X., Zhang M., Ma L., Peng Y., J. Rare Earth, 29 (2011), 313.
  • [6] Massenet O., Coey J.M.D., Holtzberg F., J. Phys. Colloq., 37 (1976), C4-297.
  • [7] Nakao H., Ohwada K., Shimomura S., Ochiai A., Namikawa K., Mizuki J., Mimura H., Yamauchi K., Murakami Y., Garrett R., AIP Conf. Proc., 1234 (2010), 935.
  • [8] Shafer M.W., Mater. Res. Bull., 7 (1972), 603.
  • [9] Li L., Hirai S., Yuan H., J. Alloy. Compd., 618 (2015), 742.
  • [10] Li L., Hirai S., Yuan H., Nakamura E., Key Eng. Mater., 655 (2015), 224.
  • [11] Felser C., J. Alloy. Compd., 262 (1997), 87.
  • [12] Adroja D.T., Malik S.K., J. Magn. Magn. Mater., 100 (1991), 126.
  • [13] Li L., Hirai S., Nakamura E., Yuan H., J. Alloy. Compd., 687 (2016), 413.
  • [14] Davis H.H., Bransky I., Tallan N.M., J. Less Common Met., 22 (1970), 193.
  • [15] Bransky I., Tallan N.M., Hed A.Z., J. Appl. Phys., 41 (1970), 1787.
  • [16] Ohara H., Sasaki S., Konoike Y., Toyoda T., Yamawaki K., Tanaka M., Physica B, 350 (2004), 353.
  • [17] Boncher W.L., Görlich E.A., Tomala K., Bitter J.L., Stoll S.L., Chem. Mater., 24 (2012), 4390.
  • [18] Pott R., Güntherodt G., Wichelhaus W., Ohl M., Bach H., Phys. Rev. B, 27 (1983), 359.
  • [19] Kwon Y.S., Haga Y., Ayache C., Suzuki T., Kasuya T., Physica B, 186 (1993), 605.
  • [20] Wachter P., Phys. Lett. A, 58 (1976), 484.
  • [21] Wickelhaus W., Simon A., Stevens K.W.H., Brown P.J., Ziebeck K.R.A., Philos. Mag., 46 (1982), 115.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b559b0db-24ed-44ac-b6f1-27e6c8205ace
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.