Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Length measurement is very common in many industrial applications and there is a number of instrumentation involved, mainly dependent on the range and accuracy requirements. In this work, a contactless optical measurement unit is developed. It is based on a mouse sensor and an external laser source. The system is calibrated using an optical board and an electronic distance measuring system. Accuracy and precision of the system is evaluated using the reference data from a total station. Values of 1 mm and 0.3 mm are respectively obtained. Length range during the experiment is 8.5 m. The data of the optical measurement unit are compared with those obtained from a commonly used wheel encoder. Results from the optical sensor of the mouse improve the encoder data.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
435--440
Opis fizyczny
Bibliogr. 12 poz., rys., tab., wykr.
Twórcy
autor
- Univesidade Federal do Paraná, Sector de Ciencias da Terra, Departamento de Geociencias, CEP 800000-000 – Curitiba, Paraná, Brazil
autor
- Universidade de Vigo, Area de Ingeniería Cartográfica, Geodesia y Fotogrametría, 36310 – Vigo, Spain
autor
- Universidade de Vigo, Area de Ingeniería Cartográfica, Geodesia y Fotogrametría, 36310 – Vigo, Spain
autor
- Universidade de Vigo, Area de Ingeniería Cartográfica, Geodesia y Fotogrametría, 36310 – Vigo, Spain
Bibliografia
- [1] ASTON R.A.E., DAVID E.J., DUFFILL A.W., The calibration of co-ordinate measuring machines and touch triggerprobes, [In] Laser Metrology and Machine Performance V, G. N. PEGGS, National Physical Laboratory, United Kingdom, 2001, pp. 127–136.
- [2] PETRIE G., Mobile mapping systems: an introduction to the technology, Geoinformatics 13(1), 2010, pp. 32–43.
- [3] KAVANAGH R.M., Gyroscopes for orientation and inertial navigation systems, Kartografija i Geoinformacije 6, 2007, pp. 254–271.
- [4] RIEGER P., STUDNICKA M., PFENNIGBAUER M., ULLRICH A., Advances in mobile laser scanning data acquisition, FIG Congresss, 2010, Sydney, Australia.
- [5] FU G., MENCIASSI A., DARIO P., Development of a low-cost active 3D triangulation laser scanner for indoor navigation of miniature mobile robots, Robotics and Autonomous Systems 60(10), 2012, pp. 1317–1326.
- [6] CHENG CHEN, WENNAN CHAI, NASIR, A.K., ROTH, H., Low cost IMU base indoor mobile robot navigation with the assist of odometry and Wi-Fi using dynamic constraints, IEEE/ION Position Location and Navigation Symposium (PLANS), 2012, pp. 1274–1279.
- [7] OWENS R.L., Optical mouse technology, 2006; http://home.comcast.net/~richardlowens/Optical-Mouse/
- [8] KAMPHUIS W.P.H., Using Optical Mouse Sensors for Sheet Position Measurement, Ph.D. Thesis, Eindhoven University of Technology (TU/e), Netherlands, 2007; http://www.mate.tue.nl/mate/pdfs/7846.pdf
- [9] ZABALETA H., VALENCIA D., PERRY J., VENEMAN J., KELLER T., Absolute position calculation for a desktop mobile rehabilitation robot based on three optical mouse sensors, 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC, 2011, pp. 2069–2072.
- [10] GONZÁLEZ-JORGE H., RODRÍGUEZ-GONZÁLEZ P., GONZÁLEZ-AGUILERA D., VARELA-GONZÁLEZ M., Metrological comparison of terrestrial laser scanning systems Riegl LMS Z390i and Trimble GX, Optical Engineering 50(11), 2011, article 116201.
- [11] GONZÁLEZ-JORGE H., RIVEIRO B., ARMESTO J., ARIAS P., Standard artifact for the goemetric verification of terrestrial laser scanning systems, Optics and Laser Technology 43(7), 2011, pp. 1249–1256.
- [12] GONZÁLEZ-JORGE H., RIVEIRO B., ARMESTO J., ARIAS P., Procedure to evaluate the accuracy of laser-scanning systems using a linear precision electro-mechanical actuator, IET Science, Measurement and Technology 6(1), 2012, pp. 6–12.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b5553b8c-e1cf-4a99-b1a9-0433531298c2