Identyfikatory
Warianty tytułu
Badanie właściwości ognioodpornych tkaniny bawełnianej pokrytej nano-ZnO
Języki publikacji
Abstrakty
In this study, an attempt was made to investigate the flame retardancy of cotton fabrics coated with a high nano-ZnO content. Via a simply method in situ, a novel ZnO/cotton composite can be fabricated with a high proportion of nano-ZnO assembled on cotton fabric, where the finished cotton fabric has a certain property of flame retardancy. Discussed herein is the effect of the processed liquid concentration, ammonia-smoking time, and curing temperature on fabric properties such as flame retardancy and hand feeling. Performed were also tests of doping boric acid using the vertical burning method. The finished cotton fabrics were analysed using X-Ray Diffrcation (XRD) and a field emission scanning electron microscope(FESEM), which indicated that between the fibres, and inside the lumen and mesopores of the cotton fibres are assembled with nano-ZnO. The results show that the nano-ZnO content on cotton fabrics can reach up to 15.63 wt%, with the finished cotton fabric having excellent flame retardancy, despite the long after-glow time; however, doping with 0.8 wt% boric acid on the cotton fabric can markedly reduce this. Therefore, a high amount of nano-ZnO doped with boric acid assembled on cotton fabric has great potential in the future.
W pracy podjęto próbę zbadania ognioodporności tkanin bawełnianych pokrytych nano-ZnO. Omówiono wpływ przetworzonej cieczy, stężenie, czas palenia amoniaku i temperaturę utwardzania (wulkanizacji) na właściwości tkaniny bawełnianej, takie jak: ognioodporność i chwyt. Wykonano również analizę kwasu borowego metodą pionowego spalania. Gotowe tkaniny bawełniane analizowano za pomocą dyfrakcji rentgenowskiej (XRD) i skaningowego mikroskopu elektronowego z emisją polową (FESEM), które wskazywały, że między włóknami oraz w lumenach i mezoporach włókien bawełnianych zgromadził się nano-ZnO. Wyniki pokazują, że zawartość nano-ZnO na tkaninach bawełnianych może dochodzić do 15,63% wag., Przy czym gotowa tkanina bawełniana ma doskonałą ognioodporność, pomimo długiego czasu po żarzeniu, jednak dodanie 0,8% wag. kwasu borowego może to znacznie zmniejszyć. Stwierdzono, że zastosowanie nano-ZnO z kwasem borowym na tkaninie bawełnianej ma ogromny potencjał do zastosowania w przyszłości.
Czasopismo
Rocznik
Strony
65--70
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
- Donghua University, College of Textiles, Shanghai 201620, China
autor
- Donghua University, College of Textiles, Shanghai 201620, China
- Key Laboratory of Textile Science and Technology, Ministry of Education, Donghua, Shanghai 201620, China
Bibliografia
- 1. Zhao P, Liu S, Xiong K, et al. Highly Flame Retardancy of Cotton Fabrics with a Novel Phosphorus/Nitrogen/Silicon Flame-Retardant Treating System[J]. Fibers and Polymers 2016; 17(4): 569-575.
- 2. Haile M, Leistner M, Sarwar O, et al. A wash-durable polyelectrolyte complex that extinguishes flames on polyester-cotton fabric[J]. RSC Advances 2016; 6(40): 33998-34004.
- 3. Guin T, Krecker M, Milhorn A, et al. Maintaining hand and improving fire resistance of cotton fabric through ultrasonication rinsing of multilayer nanocoating[J]. Cellulose 2014; 21(4): 3023-3030.
- 4. Ghoranneviss M, Shahidi S. Flame Retardant Properties of Plasma Pretreated/Metallic Salt Loaded Cotton Fabric Before and After Direct Dyeing[J]. Journal of Fusion Energy 2014; 33(2): 119-124.
- 5. Ceylan Özgür, Alongi J, Van Landuyt L, et al. Combustion characteristics of cellulosic loose fibres[J]. Fire & Materials 2014; 37(6): 482-490.
- 6. Zhao J, Zhang X, Tu R, et al. Mechanically robust, flame-retardant and antibacterial nanocomposite films comprised of cellulose nanofibrils and magnesium hydroxide nanoplatelets in a regenerated cellulose matrix[J]. Cellulose 2014; 21(3): 1859-1872.
- 7. Xie K, Gao A, Zhang Y. Flame retardant finishing of cotton fabric based on synergistic compounds containing boron and nitrogen[J]. Carbohydrate Polymers 2013; 98(1): 706-710.
- 8. Horrocks R A. Textile flammability research since 1980—Personal challenges and partial solutions[J]. Polymer Degradation and Stability 2013; 98(12): 2813-2824.
- 9. Yang Z, Wang X, Lei D, et al. A durable flame retardant for cellulosic fabrics[J]. Polymer Degradation and Stability 2012; 97(11): 2467-2472.
- 10. Chang S C, Slopek R P, Condon B, et al. Surface Coating for Flame-Retardant Behavior of Cotton Fabric Using a Continuous Layer-by-Layer Process[J]. Industrial & Engineering Chemistry Research 2014; 53(10): 3805-3812.
- 11. Deng Hui Wu, Pei Hua Zhao, Ya Qing Liu, et al. Halogen Free flame retardant rigid polyurethane foam with a novel phosphorus−nitrogen intumescent flame retardant[J]. Journal of Applied Polymer Science 2014; 131(11).
- 12. Nguyen T M D, Chang S C, Condon B, et al. Synthesis and characterization of a novel phosphorus–nitrogen-containing flame retardant and its application for textile[J]. Polymers for Advanced Technologies 2012; 23(7): 1036.
- 13. Nguyen M. Development of an environmentally friendly halogen-free phosphorous-nitrogen bond flame retardant for cotton fabrics[J]. Polymers for Advanced Technologies 2012; 23(12): 1555-1563.
- 14. Ameri Dehabadi V, Buschmann, Hans Jürgen, Gutmann J S . Flame-retardant finishing of cotton fabrics using polyamino carboxylic acids and sodium hypophosphite[J]. Fire & Materials 2014; 38(2): 166-173.
- 15. Alongi J, Carletto R A, Di Blasio A, et al. Intrinsic intumescent-like flame retardant properties of DNA-treated cotton fabrics[J]. Carbohydrate Polymers 2013 ; 96(1): 296-304.
- 16. Alongi J, Carletto R A, Blasio A D, et al. DNA: a novel, green, natural flame retardant and suppressant for cotton[J]. Journal of Materials Chemistry A 2013; 1: 4779–4785.
- 17. Katja Jazbec, Martin Šala, Miran MozetiI et al. Functionalization of Cellulose Fibres with Oxygen Plasma and ZnO Nanoparticles for Achieving UV Protective Properties[J]. Journal of Nanomaterials 2015; 39: 1-8.
- 18. Li Y, Zou Y, Hou Y. Fabrication and UV-blocking Property of Nano-ZnO Assembled Cotton Fibers Via a Two-step Hydrothermal Method[J]. Cellulose 2011; 18(6): 1643-1649.
- 19. Teterycz H, Suchorska-Woźniak P, Fiedot M, Karbownik I. Deposition of Zinc Oxide on the Materials Used in Medicine. Preliminary Results[J]. FIBRES & TEXTILES in Eastern Europe 2014; 22, 3(105): 126-132.
- 20. Ramamurthy P, Chellamani KP, Dhurai B, ThankaRajan SP, Subramanian B, Santhini E. Antimicrobial Characteristics of Pulsed Laser Deposited Metal Oxides on Polypropylene Hydroentangled Nonwovens for Medical Textiles[J]. FIBRES & TEXTILES in Eastern Europe 2017; 25, 2(122): 112-119.
- 21. Kumanan Bharathi Yazhini and Halliah Gurumallesh Prabu. Study on flameretardant and UV-protection properties of cotton fabric functionalized with ppy– ZnO–CNT nanocomposite[J]. RSC Advances 2015; 5: 49062–49069.
- 22. Buczyłko K, Chwała C, Niekraszewicz A, Ciechańska D, Wagner A. Evaluation of the Effect of Anti-Mite Fabric on the Well-Being of Patients with a Mite Allergy[J]. FIBRES & TEXTILES in Eastern Europe 2008; 16, 4(69): 121-125.
- 23. Xie K, Gao A, Zhang Y. Flame retardant finishing of cotton fabric based on synergistic compounds containing boron and nitrogen[J]. Carbohydrate Polymers 2013; 98(1): 706-710.
- 24. Technical Supervision of State Bureau. GB/T 5455-1997 Vertical Combustion Performance Test of Textile[S]. Standardization of Chinese Textile Research Institute. Beijing: Chinese standard press, 1997.
- 25. The national standardization technical committee foundation branch textiles. GB/T 3921.3-1997 national standard of the People's Republic of China[S]. Beijing: China standard press, 1997.
- 26. State Administration of Quality Supervision, Inspection and Quarantine. GB 20286-2006 Flame Retardant Products in Public Places and Component Combustion Performance Requirements and Identification[S]. National Fire Standardization Technical Committee Sub-committee on Fire Materials. Beijing: Chinese standard press, 1997.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b5511f95-2570-43a4-aa2f-3af8b1844553