PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of column segment diameter ratio on flow field and separation performance of the composite column-cone hydrocyclone

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To address the misplacement of fine particles in the underflow caused by structural defects in conventional hydrocyclones, a composite column-cone hydrocyclone (C-C hydrocyclone) was proposed, featuring a cone-column-cone structure. Computational Fluid Dynamics (CFD) techniques were employed to study the diameter ratio and various configurations of C-C hydrocyclone, assessing the impact on separation performance. Results indicated that increasing the column section diameter ratio from 0.5 to 0.7 reduced the cutting size by 22.96 %, enhanced sharpness by 9.87 %, and improved separation efficiency. These findings offer valuable insights for the design and application of C-C hydrocyclones based on specific requirements such as grinding classification and flotation operations.
Rocznik
Strony
art. no. 200063
Opis fizyczny
Bibliogr. 38 poz., rys., tab., wykr.
Twórcy
autor
  • College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China
autor
  • College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China
autor
  • College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China
autor
  • College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China
autor
  • College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China
autor
  • Shandong Xinjulong Energy Co., Ltd, Heze 274900, China
autor
  • Shandong Xinjulong Energy Co., Ltd, Heze 274900, China
Bibliografia
  • BANERJEE, C., CEPEDA, E., SWITZER, D., HUNTER, S., 2024. Application potential of cavex® double effect hydrocyclone for the classification of mine tailings - a pilot scale study. Min Proc Ext Met Rev.
  • CUI, B.Y., WEI, D.Z., GAO, S.L., LIU, W.G., FENG, Y.Q., 2014. Numerical and experimental studies of flow field in hydrocyclone with air core. Trans. Nonferrous. Metals. Soc. 24 (08), 2642–2649.
  • CHU, L.Y., YU, W., WANG, G.J., ZHOU, X.T., CHEN, W.M., DAI, G.Q., 2004. Enhancement of hydrocyclone separation performance by eliminating the air core. Chem. Eng. Process. 43, 1441–1448.
  • DUNDAR, H., 2020. Investigating the benefits of replacing hydrocyclones with high-frequency fine screens in closed grinding circuit by simulation. Miner. Eng. 148, 106212.
  • FU, S.C., QIAN, Y. X., YUAN, H. X., FANG, Y., 2022. Effect of cone angles of a hydrocyclone for the separation of waste plastics with low value of density difference. Waste. Manage. 140: 183-192.
  • GHODRAT, M., KUANG, S.B., YU, A.B., VINCE, A., BARNETT, G.D., BARNETT, P.J., 2014. Numerical analysis of hydrocyclones with different conical section designs. Miner. Eng. 62, 74–84.
  • GHODRAT, M., KUANG, S. B., YU, A.B., Vince, A., Barnett, G.D., Barnett, P.J., 2014. Numerical analysis of hydrocyclones with different vortex finder configurations. Miner. Eng. 63, 125–138.
  • GHODRAT, M., QI, Z., KUANG, S.B., JI, L., YU, A.B., 2016. Computational investigation of the effect of particle density on the multiphase flows and performance of hydrocyclone. Miner. Eng. 90, 55–69.
  • GUO, Z.Y., SUN, Y.J., PAN, S.Y., CHANG, P.C., 2019. Integration of green energy and advanced energy-efficient technologies for municipal wastewater treatment plants. Int. J. Environ. 16(7):1282.
  • HOU, D.X., CUI, B.Y., ZHANG, H., ZHAO, Q., JI, A.K., WEI, D.Z., FENG, Y.Q., 2021. Designing the hydrocyclone with flat bottom structure for weakening bypass effect. Powder. Technol. 394, 724-734.
  • HOU, D.X., CUI, B.Y., ZHAO, Q., WEI, D.Z., SONG, Z.G., FENG, Y.Q., 2021. Research on the structure of the cylindrical hydrocyclone spigot to mitigate the misplacement of particles. Powder. Technol. 387, 61-71.
  • HOU, D.X., ZHAO, Q, LIU, P.K, JIANG, L.Y., CUI, B.Y., WEI D.Z., 2023. . Effects of bottom profile on the circulation and classification of particles in cylindrical hydrocyclones. Adv. Powder. Technol. 34: 7.
  • HOU, D.X., LIU, P.K., ZHAO, Q., 2023. Effect of separation space on the separation performance of cylindrical hydrocyclones. Powder. Technol. 427.
  • HOU, D.X., Zhao, Q, Cui, B.Y, Wei, D.Z., SONG, Z.G., Feng, Y.Q., 2022. Geometrical configuration of hydrocyclone for improving the separation performance. Adv. Powder. Technol. 33, 103419,
  • HSIEH, K.T., RAJAMANI, K., 1988. Phenomenological model of the hydrocyclone: Model development and verification for single-phase flow. Int. J. Miner. Process. 22(1-4), 223-237.
  • JIANG, L.Y., LIU, P.K., ZHANG, Y.K., Li, X.Y., YANG X.H., HOU, D.X., CHEN, B., 2023. Effect of cone section combination form on the separation performance of a biconical hydrocyclone, Powder. Technol. 419.
  • JIANG, L.Y., LIU, P.K., ZHANG, Y.K., Li, X.Y., YANG X.H., Xu, H.L., Wang, H., 2022. Experimental study of the separation performance of a hydrocyclone with a compound curve cone. Powder Technol., 409,117829.
  • JIANG, L.Y., LIU, P.K., YANG, X.H., ZHANG, Y.K., LI, X.Y., XU, H.L., WANG, H., 2020. Experimental research on the separation performance of W-shaped hydrocyclone. Powder. Technol. 372, 532-541.
  • JUNG, K.J., HWANG, I.J., KIM, Y.J., 2019. Effect of inner wall configurations on the separation efficiency of hydrocyclone. J. Mech. Sci. Technol. 33(11), 5277-5283.
  • LEE, W., JUNG, M., HAN, S., PARK, S., PARK, J.K., 2020. Simulation of layout rearrangement in the grinding/classification process for increasing throughput of industrial gold ore plant. Miner. Eng. 157, 106545.
  • LI, C.Y., LI, J.P., WANG, N.N., ZHAO, Q., WANG, P., 2021. Status of the treatment of produced water containing polymer in oilfields: A review. J. Environ. 9(4), 105303.
  • LIU, P.K., FU, W. X., JIANG, L.Y., ZHANG, Y.K., YANG, X.Y., LI, X.Y., WANG, H., 2023. The separation performance of a parabolic hydrocyclone in separating iron from red mud. Powder. Technol. 416, 118205.
  • LIU, P.K., FU, W.X., JIANG, L.Y., YANG, X.H., ZHANG, Y.K., LI, X.Y., ZHANG, Y.L., 2023. Effect of the position of overflow pipe with mixed spiral structures on the separation performance of hydrocyclones. Separations. 10(2). 84.
  • LV, W.J., ZHAO, K.Q., MA, S.H., KONG, L.K., DANG, Z.H., CHEN, J.Q., ZHANG, Y.H., HU, J., 2020. Process of removing heavy metal ions and solids suspended in micro-scale intensified by hydrocyclone. J Clean Prod. 263, 116960.
  • MOTION, A., BENARD, A., 2017. Design of liquid-liquid separation hydrocyclones using parabolic and hyperbolic swirl chambers for efficiency enhancement. Chem. Eng. Res. Des. 122: 184-197.
  • PADHI, M., KUMAR, M., MANGADODDY, N., 2020. Understanding the Bicomponent Particle Separation Mechanism in a Hydrocyclone Using a Computational Fluid Dynamics Model. Ind. Eng. Chem. Rec. 59(25): 11621-11644.
  • PATRA, G.; BARNWAL, R.; BEHERA, S.K.; MEIKAP, B.C., 2018. Removal of dyes from aqueous solution by sorption with fly ash using a hydrocyclone. J. Environ. 6(4): 5204-5211.
  • SONG, T., YAO, Y., NI, L., 2020. Response surface method to study the effect of conical surface and vortex-finder lengths on de-foulant hydrocyclone with reflux ejector. Sep. Purif. 253, 117511.
  • SU, T.L., ZHANG, Y.F., 2022. Effect of the Vortex Finder and Feed Parameters on the Short-Circuit Flow and Separation Performance of a Hydrocyclone. Processes. 10(4):771.
  • TANG B., XU, Y.X., SONG, X.F., SUN, Z., Yu, J.G., 2015. Numerical study on the relationship between high sharpness and configurations of the vortex finder of a hydrocyclone by central composite design. Chem. Eng. J. 278, 504–516.
  • TIAN, T.Y., NI. L, SONG, T., SHEN, T., YAO, Y., ZHAO, J.N., 2019. Numerical study of foulantwater separation using hydrocyclones enhanced by reflux device: effect of underflow pipe diameter. Sep. Purif. Technol. 215, 10–24.
  • VYSYARAJU, R., PUKKELLA, A.K., 2022. Computational investigation of a novel hydrocyclone for fines bypass reduction. Powder Technol. 395, 501-515
  • VEGA-GARCIA, D., BRITO-PARADA, P.R., CILLIERS, J.J., 2018. Optimising small hydrocyclone design using 3D printing and CFD simulations. Chem. Eng. J. 350, 653–659.
  • XIE, H.Y., SUN, R., REN, X.J., YOU, Z.C., LIU, Y.H., FENG, D.X., CHEN, L.Z., 2020. Development of a novel fluidized hydrocyclone concentrator for mineral separation. Sep. Purif. 248, 116960.
  • YANG, Q., WANG, H.L., LIU, Y., ZHI, M.L., Solid/liquid separation performance of hydrocyclones with different cone combinations. Sep. Purif. Technol. 74 (3) (2010) 271–279.
  • YE, J.X., XU, Y.X., SONG, X.F., YU, J.G., 2019. Novel conical section design for ultra-fine particles classification by a hydrocyclone. Chem. Eng. Res. Des. 144: 135-149.
  • ZHANG, H., NI, H.J., 2022. Design and numerical simulation on new type near-bit hydrocyclone for downhole olid-Liquid Separation. Arab. J. Sci. Eng. 47(9): 11941-11951.
  • ZHANG, L., YANG, L., HOU, H.C., ZHAO, Y; LIN, J., ZHANG, Z.L., BU, C.Y., ZHENG, X.R., FU, D., 2023. Experimental study of quartz classification in the enhanced gravity field using Falcon concentrator. Physicochemical Probl Mi. 59(6).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b54b7aa8-5ab8-4d19-a966-9674ae94ac44
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.