PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Status of long-wave Auger suppressed HgCdTe detectors operating > 200 K

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We report on the status of long-wave infrared Auger suppressed HgCdTe multilayer structures grown on GaAs substrates designed for high operating temperature condition: 200-300 K exhibiting, detectivity ~10¹¹ cmHz¹/² /W, time response within a ~120 ps range at 230 K. Abnormal responsivity within the range of ~30 A/W for electrical area 30×30 μm² under reverse bias V = 150 mV is reported. Maximum extraction coefficient of ~2.3 was estimated for analysed structures.
Słowa kluczowe
Twórcy
autor
  • Institute of Applied Physics, Military University of Technology, ul. Kaliskiego 2, 00-908 Warsaw, Poland
autor
  • Institute of Applied Physics, Military University of Technology, ul. Kaliskiego 2, 00-908 Warsaw, Poland
autor
  • Institute of Applied Physics, Military University of Technology, ul. Kaliskiego 2, 00-908 Warsaw, Poland
autor
  • VIGO System S.A., ul. Poznańska 129/133, 05-850 Ożarów Mazowiecki, Poland
  • VIGO System S.A., ul. Poznańska 129/133, 05-850 Ożarów Mazowiecki, Poland
autor
  • Institute of Applied Physics, Military University of Technology, ul. Kaliskiego 2, 00-908 Warsaw, Poland
autor
  • Institute of Applied Physics, Military University of Technology, ul. Kaliskiego 2, 00-908 Warsaw, Poland
  • VIGO System S.A., ul. Poznańska 129/133, 05-850 Ożarów Mazowiecki, Poland
Bibliografia
  • 1. J. Piotrowski and A. Rogalski, High-Operating Temperature Infrared Photodetectors, SPIE Press, Bellingham, 2007.
  • 2. A. Rogalski, Infrared Detectors, 2nd edition, CRC Press, Boca Raton, 2011.
  • 3. J. Piotrowski and A. Piotrowski, “Room temperature IR photodetectors” in Mercury Cadmium Telluride. Growth, Properties and Applications, edited by P. Capper and J. Garland, pp. 513-537, Wiley, West Sussex, 2011.
  • 4. J. Piotrowski and A. Rogalski, “Uncooled long wavelength infrared photon detectors”, Infrared Phys. Technol. 46, 115-131 (2004).
  • 5. A. Rogalski, “HgCdTe infrared detector material: history, status and outlook”, Rep. Prog. Phys. 68, 2267-2336 (2005).
  • 6. J. Piotrowski and W. Gawron, “Ultimate performance of infrared photodetectors and figure of merit of detector material”, Infrared Phys. Technol. 38, 63-68 (1997).
  • 7. T. Ashley and C.T. Elliott, “Nonequlibrium devices for infrared detection”, Electron. Lett. 21, 451-452 (1985).
  • 8. C.T. Elliott, “Non-equilibrium mode of operation of narrow gap semiconductor devices”, Semicond. Sci. Technol. 5, S30-S37 (1990).
  • 9. T. Elliott, “New infrared and other applications of narrow gap semiconductors”, Proc. SPIE 3436, 763-775 (1998).
  • 10. C.T. Elliott, “Photoconductive and non-equilibrium devices in HgCdTe and related alloys” in Infrared Detectors and Emitters: Materials and Devices, pp. 279-312, edited by P. Capper and C.T. Elliott, Kluwer Academic Publishers, Boston, 2001.
  • 11. P. Norton, “HgCdTe infrared detectors”, Opto-Electron. Rev 10, 159-174 (2002).
  • 12. P.Y. Emelie, J.D. Philips, S. Velicu, and C.H. Grein, “Modelling and design consideration of HgCdTe infrared photodiodes under nonequilibrium operation”, J. Electron. Mater. 36, 846-851 (2007).
  • 13. P.Y. Emelie, S. Velicu, C.H. Grein, J.D. Philips, P.S. Wijewamasuriya, and N.K. Dhar, “Modelling of LWIR HgCdTe Auger-suppressed infrared photodiodes under nonequilibrium operation”, J. Electron. Mater. 37,1362-1368 (2008).
  • 14. S. Velicu, C.H. Grein, P.Y. Emelie, A. Itsuno, J.D. Philips, and P. Wijewamasuriya, “MWIR and LWIR HgCdTe infrared detectors operated with reduced cooling requirements”, J. Electron. Mater. 39, 873-881 (2010).
  • 15. A.M. Itsuno, J.D. Philips, and S. Velicu, “Predicted performance improvement of Auger-suppressed HgCdTe photodiodes and p-n heterojunction detectors”, IEEE Trans. Electron Dev. 58, 501-507 (2011).
  • 16. H. Kocer, “Numerical investigation of Auger contributed performance loss in long wavelength infrared HgCdTe photodiodes”, Solid-State Electron. 87, 58-63 (2013).
  • 17. S. Maimon and G. Wicks, “nBn detector, an infrared detector with reduced dark current and higher operating temperature”, Appl. Phys. Lett. 89, 151109-1-3 (2006).
  • 18. A. Piotrowski, P. Madejczyk, W. Gawron, K. Kłos, J. Pawluczyk, J. Rutkowski, J. Piotrowski, and A. Rogalski, “Progress in MOCVD growth of HgCdTe heterostructures for uncooled infrared photodetectors”, Infrared Phys. Technol. 49, 173-182 (2007).
  • 19. P. Madejczyk, W. Gawron, P. Martyniuk, A. Kębłowski, A. Piotrowski, W. Pusz, A. Kowalewski, J. Piotrowski, and A. Rogalski, “MOCVD grown HgCdTe device structure for ambient temperature LWIR detectors”, Semicond. Sci. Technol. 28, 105017 (2013).
  • 20. J. Piotrowski, W. Gawron, Z. Orman, J. Pawluczyk, K. Kłos, D. Stępień, and A. Piotrowski, “Dark currents, responsivity and response time in graded gap HgCdTe structures”, Proc. SPIE 7660, 766031 (2010).
  • 21. A. Piotrowski, J. Piotrowski, W. Gawron, J. Pawluczyk and M. Pedzinska, “Extension of spectral range of Peltier cooled photodetectors to 16 µm”, Proc. SPIE 7298, 729824 (2009).
  • 22. D. Stanaszek, J. Piotrowski, A. Piotrowski, W. Gawron, Z. Orman, R. Paliwoda, M. Brudnowski, J. Pawluczyk and M. Pedzińska, “Mid and long infrared detection modules for picosecond range measurements”, Proc. SPIE 7482, 74820M (2009).
  • 23. A. Piotrowski, J. Piotrowski, W. Gawron, J. Pawluczyk, М. Pedzinska, “Extension of usable spectral range of Peltier cooled photodetectors”, Acta Physica Polonica A 116,52-55 (2009).
  • 24. APSYS Macro/User’s Manual ver. 2011. Crosslight Software Inc. (2011).
  • 25. P.P. Capper, Properties of Narrow Gap Cadmium-Based Compounds, London, U.K.: Inst. Elect. Eng, 1994.
  • 26. R.K. Bhan and V. Dhar, “Carrier density approximation for non-parabolic and highly degenerate HgCdTe semiconductors”, Semicond. Sci. Technol. 19, 413-416 (2003).
  • 27. J. Wang, X. Chen, W. Hu, L. Wang, Y. Chen, W. Lu, and F. Xu, “Different approximation for carrier statistic in non-parabolic MWIR HgCdTe photovoltaic devices”, Proc. SPIE 8012, 80123B (2011).
  • 28. J. Wenus, J. Rutkowski, and A. Rogalski, “Two-dimensional analysis of double-layer heterojunction HgCdTe photodiodes,” IEEE T. Electron Devices 48, 7 (2001).
  • 29. T.N. Casselman and P.E. Petersen, “A comparison of the dominant Auger transitions in p-type (HgCd)Te”, Solid State Commun. 33, 615-619 (1980).
  • 30. G.A. Hurkx, D.B.M. Klaassen, and M.P.G. Knuvers, “A new recombination model for device simulation including tunnelling”, IEEE T. Electron Devices 39, 2 (1992).
  • 31. G.L. Hansen, J.L. Schmidt, and T.N. Casselman, “Energy gap vs. alloy composition and temperature in Hg1-xCdxTe”, J. Appl.Phys. 53, 7099 (1982).
  • 32. W. Scott, “Electron Mobility in Hg1-xCdxTe”, J. Appl. Phys. 43, 1055 (1972).
  • 33. W.W. Anderson, “Absorption constant of Pb1-xSnxTe and Hg1-xCdxTe alloys”, Infrared Phys. Technol. 20, 363 (1980).
  • 34. E. Finkman and S. E.Schacham, “The exponential optical absorption band tail of Hg1-xCdxTe”, J. Appl. Phys. 56, 10 (1984).
  • 35. Q. Li and R.W. Dutton, “Numerical small-signal AC modelling of deep-level-trap related frequency-dependent output conductance and capacitance for GaAs MESFET’s on semi-insulating substrates”, IEEE T. Electron Devices 38, 1285-1288 (1991).
  • 36. P.S. Wijewamasuriya, “Non-equilibrium operation of long wavelength HgCdTe photovoltaic detectors for higher operating temperature applications”, ARL-TR-6532 (2013).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b54920e1-6686-4d03-a0e5-b252bcf63fc2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.