Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Ultrasound plays a crucial role in various applications, including acoustic microscopy, medical imaging, therapy, and non-destructive testing. Despite its extensive use, experimental mapping of nonlinear focused ultrasonic fields is largely overlooked when compared to its linear counterparts or simulated nonlinear fields. The oversight arises from the inherent challenge of discerning electrical and acoustic nonlinearities. This research paper addresses this gap by proposing a 3D nonlinear ultrasonic field mapping system designed to provide precise measurements and imaging of both linear and purely acoustical nonlinear focused fields. The study involves initial simulations of linear and nonlinear ultrasonic fields emitted by a focused transducer in three dimensions. Subsequently, the proposed system is designed and experimentally validated through the acquisition of linear and nonlinear focused ultrasonic fields in two distinct fluids. The precision of the system is further demonstrated through the successful measurement of nonlinear parameters in the tested media, thereby contributing to the progression of nonlinear ultrasound field mapping and its applications.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
1--13
Opis fizyczny
Bibliogr. 34 poz., rys., tab., wykr., wzory
Twórcy
autor
- Euromed University of Fes, UEMF, Morocco
autor
- IES, University of Montpellier, CNRS, Montpellier, France
autor
- IES, University of Montpellier, CNRS, Montpellier, France
Bibliografia
- [1] Briggs, A., & Kolosov, O. (2009). Acoustic Microscopy. Oxford University Press.
- [2] Dwivedi, K., Trivedi, G., Khijwania, S., & Osuch, T. (2020). Design and numerical analysis of a highly sensitive ultrasonic acoustic sensor based on π-phase-shifted fiber Bragg grating and fiber Mach-Zehnder interferometer interrogation. Metrology and Measurement Systems, 27(2), 289-300. https://doi.org/10.24425/mms.2020.132775
- [3] Aghaei, A., Bochud, N., Rosi, G., Grossman, Q., Ruffoni, D., & Naili, S. (2022). Ultrasound characterization of bioinspired functionally graded soft-to-hard composites: Experiment and modeling. The Journal of the Acoustical Society of America, 151(3), 1490-1501. https://doi.org/10.1121/10.0009630
- [4] Lionetto, F. (2021). Ultrasound for Material Characterization and Processing. Materials, 14(14), 3891. https://doi.org/10.3390/ma14143891
- [5] Quate, C. F., Atalar, A., & Wickramasinghe, H. K. (1979). Acoustic microscopy with mechanical scanning - A review. Proceedings of the IEEE, 67(8), 1092-1114. https://doi.org/10.1109/proc.1979.11406
- [6] Wang, H., Yang, X., Liu, Y., Jiang, B., & Luo, Q. (2013). Reflection-mode optical-resolution photoacoustic microscopy based on a reflective objective. Optics Express, 21(20), 24210. https://doi.org/10.1364/oe.21.024210
- [7] Wearing, S. C., Kuhn, L., Pohl, T., Horstmann, T., & Brauner, T. (2020). Transmission-Mode Ultrasound for Monitoring the Instantaneous Elastic Modulus of the Achilles Tendon During Unilateral Submaximal Vertical Hopping. Frontiers in Physiology, 11. https://doi.org/10.3389/fphys.2020.567641
- [8] Hingot, V., Chavignon, A., Heiles, B., & Couture, O. (2021). Measuring Image Resolution in Ultrasound Localization Microscopy. IEEE Transactions on Medical Imaging, 40(12), 3812-3819. https://doi.org/10.1109/tmi.2021.3097150
- [9] Clair, B., Despaux, G., Chanson, B., & Thibaut, B. (2000). Utilisation de la microscopie acoustique pour l’étude des propriétés locales du bois: étude préliminaire de paramètres expérimentaux. Annals of Forest Science, 57(4), 335-343. https://doi.org/10.1051/forest:2000124 (in French)
- [10] Lean, H. Q., & Zhou, Y. (2019). Acoustic Field of Phased-Array Ultrasound Transducer with the Focus/Foci Shifting. Journal of Medical and Biological Engineering, 39(6), 919-931. https://doi.org/10.1007/s40846-019-00464-z
- [11] Treeby, B. E., Wise, E. S., Kuklis, F., Jaros, J., & Cox, B. T. (2020). Nonlinear ultrasound simulation in an axisymmetric coordinate system using a k-space pseudospectral method. The Journal of the Acoustical Society of America, 148(4), 2288-2300. https://doi.org/10.1121/10.0002177
- [12] Humphrey, V. F. (2007). Ultrasound and matter - Physical interactions. Progress in Biophysics and Molecular Biology, 93(1-3), 195-211. https://doi.org/10.1016/j.pbiomolbio.2006.07.024
- [13] Hamilton, M. F., & Blackstock, D. T. (1998). Nonlinear Acoustics (1st ed.). Academic Press.
- [14] Beyer, R. T. (1960). Parameter of Nonlinearity in Fluids. The Journal of the Acoustical Society of America, 32(6), 719-721. https://doi.org/10.1121/1.1908195
- [15] Kielczyński, P., Szalewski, M., Balcerzak, A., Wieja, K., Rostocki, A. J., & Siegoczyński, R. M. (2013). Thermodynamic method for measuring the B/A nonlinear parameter under high pressure. 2013 IEEE International Ultrasonics Symposium (IUS), 1665-1667. https://doi.org/10.1109/ultsym.2013.0424
- [16] Woodsum, H. C., & Westervelt, P. J. (1981). A general theory for the scattering of sound by sound. Journal of Sound and Vibration, 76(2), 179-186. https://doi.org/10.1016/0022-460x(81)90350-3
- [17] Blackstock, D. T. (1966). Connection between the Fay and Fubini Solutions for Plane Sound Waves of Finite Amplitude. The Journal of the Acoustical Society of America, 39(6), 1019-1026. https://doi.org/10.1121/1.1909986
- [18] Shooter, J. A., Muir, T. G., & Blackstock, D. T. (1974). Acoustic saturation of spherical waves in water. The Journal of the Acoustical Society of America, 55(1), 54-62. https://doi.org/10.1121/1.1919475
- [19] Anastasiadis, P., & Zinin, P. V. (2018). High-Frequency Time-Resolved Scanning Acoustic Microscopy for Biomedical Applications. The Open Neuroimaging Journal, 12(1), 69-85. https://doi.org/10.2174/1874440001812010069
- [20] Waldner, C., & Hirn, U. (2020). Ultrasonic Liquid Penetration Measurement in Thin Sheets - Physical Mechanisms and Interpretation. Materials, 13(12), 2754. https://doi.org/10.3390/ma13122754
- [21] Bjørnø, L. (2010). Introduction to nonlinear acoustics. Physics Procedia, 3(1), 5-16. https://doi.org/10.1016/ j.phpro.2010.01.003
- [22] Treeby, B. E., & Cox, B. T. (2010). k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields. Journal of Biomedical Optics, 15(2), 021314. https://doi.org/10.1117/1.3360308
- [23] Treeby, B. E., Jaros, J., Rendell, A. P., & Cox, B. T. (2012). Modeling nonlinear ultrasound propagation in heterogeneous media with power law absorption using a k-space pseudospectral method. The Journal of the Acoustical Society of America, 131(6), 4324-4336. https://doi.org/10.1121/1.4712021
- [24] Martin, E., Ling, Y. T., & Treeby, B. E. (2016). Simulating Focused Ultrasound Transducers Using Discrete Sources on Regular Cartesian Grids. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 63(10), 1535-1542. https://doi.org/10.1109/tuffc.2016.2600862
- [25] Treeby, B. E., & Cox, B. T. (2010). Modeling power law absorption and dispersion for acoustic propagation using the fractional Laplacian. The Journal of the Acoustical Society of America, 127(5), 2741-2748. https://doi.org/10.1121/1.3377056
- [26] Rugar, D. (1984). Resolution beyond the diffraction limit in the acoustic microscope: A nonlinear effect. Journal of Applied Physics, 56(5), 1338-1346. https://doi.org/10.1063/1.334124
- [27] Boechat, F. M. B., Rodrigues, E. P., de Oliveira, T. F. , & Buiochi, F. (2018). Development of a PVDF needle-type hydrophone for measuring ultrasonic fields. 2018 13th IEEE International Conference on Industry Applications (INDUSCON), 1004-1007. https://doi.org/10.1109/induscon.2018.8627232
- [28] Lin, Y., Shi, Y., Zhang, J., Wang, F., & Sun, H. (2020). Design and evaluation of a needle tip measurement system based on binocular vision. Metrology and Measurement Systems, 27(3), 495-512. https://doi.org/10.24425/mms.2020.134593
- [29] Li, C., & Wang, L. V. (2008). High-numerical-aperture-based virtual point detectors for photoacoustic tomography. Applied Physics Letters, 93(3). https://doi.org/10.1063/1.2963365
- [30] Germain, L., Jacques, R., & Cheeke, J. D. N. (1989). Acoustic microscopy applied to nonlinear characterization of biological media. The Journal of the Acoustical Society of America, 86(4), 1560-1565. https://doi.org/10.1121/1.398716
- [31] Ehsan Jafarzadeh, Mohammad H. Amini, & Anthony N. Sinclair (2021). Determination of the Ultrasonic Non-linearity Parameter B/A versus Frequency for Water. Ultrasound in Medicine & Biology, 47(3), 809-819. https://doi.org/10.1016/j.ultrasmedbio.2020.11.027
- [32] Garrett, S.L. (2020). Nonlinear Acoustics. In Graduate Texts in Physics (pp. 701-753). Springer International Publishing. https://doi.org/10.1007/978-3-030-44787-8_15
- [33] Xia, L. (2019). Analysis of acoustic nonlinearity parameter B/A in liquids containing ultrasound contrast agents. The Journal of the Acoustical Society of America, 146(2), 1394-1403. https://doi.org/10.1121/1.5123486
- [34] Yadav, K., Yadav, S., & Dubey, P. K. (2022). Metrological investigation and calibration of reference standard block for ultrasonic non-destructive testing. Metrology and Measurement Systems, 29(3), 525-538. https://doi.org/10.24425/mms.2022.142271
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b546af7a-e5c5-4fd8-a17c-31a44f606ff0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.