PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Chitozan w syntezie węgli aktywowanych wzbogaconych w azot - najnowsze osiągnięcia

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Chitosan in the synthesis of nitrogen-doped activated carbons - recent achievements
Języki publikacji
PL
Abstrakty
PL
W ostatnich pięciu latach bogate w azot polimery naturalne, jak chityna i chitozan oraz inne materiały biologiczne o wysokiej zawartości azotu, są intensywnie badane jako prekursory węgli aktywowanych o wysokiej zawartości azotu. Szczególnie często obiektem badań jest chitozan jako surowiec karbonizacyjny. Zainteresowanie materiałami posiadającymi na powierzchni heteroatomowe grupy funkcyjne, w szczególności połączenia węgiel-azot, wynika głównie z nadziei na zastosowanie ich jako materiału elektrodowego w elektrochemicznych źródłach prądu, takich jak superkondensatory, baterie metal-powietrze czy ogniwa paliwowe. Opublikowane wyniki wskazują na istotnie korzystne właściwości elektrod i całych urządzeń elektrochemicznych zbudowanych w oparciu o wysokoazotowe materiały węglowe otrzymane z chitozanu. Niniejsza praca jest pierwszym w literaturze podsumowaniem stanu badań nad metodami syntezy węgli aktywowanych otrzymywanych z chitozanu w ciągu ostatnich 5 lat.
EN
The paper reviews several methods for the preparation of chitosan-originated nitrogenrich activated carbons N_AC. The review considers the historical aspect of the synthesis development including the first scientific paper and patent application in this field. The relationship between the method for N_AC manufacturing from chitosan and their textural properties as surface area, total pore volume, and the nature of the porosity is presented. The influence of the N_AC obtaining method on the nitrogen content in the carbons is discussed, too. Identified potential applications of chitosan-originated N_ACs are described in relation to their basic physical and chemical properties.
Rocznik
Strony
379--390
Opis fizyczny
Bibliogr. 50 poz.
Twórcy
autor
  • Uniwersytet Mikołaja Kopernika w Toruniu, Wydział Chemii, Katedra Chemii Materiałów, Adsorpcji i Katalizy, ul. J. Gagarina 7, 87-100 Toruń
autor
  • Uniwersytet Mikołaja Kopernika w Toruniu, Wydział Chemii, Katedra Chemii Materiałów, Adsorpcji i Katalizy, ul. J. Gagarina 7, 87-100 Toruń
  • Uniwersytet Mikołaja Kopernika w Toruniu, Wydział Chemii, Katedra Chemii Materiałów, Adsorpcji i Katalizy, ul. J. Gagarina 7, 87-100 Toruń
Bibliografia
  • [1] Jia Y.F., Xiao B., Thomas K.M., Adsorption of metal ions on nitrogen surface functional groups in activated carbons, Langmuir 2002, 18, 470-478.
  • [2] Li B., Dai F., Xiao Q., Yang L., Shen J., Zhang C., Cai M., Nitrogen-doped activated carbon for a high energy hybrid supercapacitor, Energy & Environmental Science 2016, 9, 102-106.
  • [3] Zhao Z., Wang Y., Li M., Yang R., High performance N-doped porous activated carbon based on chicken feather for supercapacitors and CO2 capture, RSC Advances 2015, 5, 34803-34811.
  • [4] Chen C., Kim J., Ahn W.-S., Efficient carbon dioxide capture over a nitrogen-rich carbon having a hierarchical micro-mesopore structure, Fuel 2012, 95, 360-364.
  • [5] Li P.-Z., Zhao Y., Nitrogen-rich porous adsorbents for CO2 capture and storage, Chemistry – An Asian Journal 2013, 8, 1680-1691.
  • [6] Raymundo-Piñero E., Cazorla-Amorós D., Linares-Solano A., The role of different nitrogen functional groups on the removal of SO2 from flue gases by N-doped activated carbon powders and fibres, Carbon 2003, 41, 1925-1932.
  • [7] Xiao B., Thomas K.M., Adsorption of aqueous metal ions on oxygen and nitrogen functionalized nanoporous activated carbons, Langmuir 2005, 21, 3892-3902.
  • [8] Deng Y., Xie Y., Zou K., Ji X., Review on recent advances in nitrogen-doped carbons: preparations and applications in supercapacitors, Journal of Materials Chemistry A 2016, 4, 1144-1173.
  • [9] Wei Q., Tong X., Zhang G., Qiao J., Gong Q., Sun S., Nitrogen-doped carbon nanotube and graphene materials for oxygen reduction reactions, Catalysts 2015, 5, 1574.
  • [10] Zhang B., Wen Z., Ci S., Mao S., Chen J., He Z., Synthesizing nitrogen-doped activated carbon and probing its active sites for oxygen reduction reaction in microbial fuel cells, ACS Applied Materials & Interfaces 2014, 6, 7464-7470.
  • [11] Sidik R.A., Anderson A.B., Subramanian N.P., Kumaraguru S.P., Popov B.N., O2 reduction on graphite and nitrogen-doped graphite: Experiment and theory, The Journal of Physical Chemistry B 2006, 110, 1787-1793.
  • [12] Stöhr B., Boehm H.P., Schlögl R., Enhancement of the catalytic activity of activated carbons in oxidation reactions by thermal treatment with ammonia or hydrogen cyanide and observation of a superoxide species as a possible intermediate, Carbon 1991, 29, 707-720.
  • [13] Stavropoulos G.G., Samaras P., Sakellaropoulos G.P., Effect of activated carbons modification on porosity, surface structure and phenol adsorption, Journal of Hazardous Materials 2008, 151, 414-421.
  • [14] Li L., Liu E., Li J., Yang Y., Shen H., Huang Z., Xiang X., Li W., A doped activated carbon prepared from polyaniline for high performance supercapacitors, Journal of Power Sources 2010, 195, 1516-1521.
  • [15] Lei Z., Zhao M., Dang L., An L., Lu M., Lo A.-Y., Yu N., Liu S.-B., Structural evolution and electrocatalytic application of nitrogen-doped carbon shells synthesized by pyrolysis of nearmonodisperse polyaniline nanospheres, Journal of Materials Chemistry 2009, 19, 5985-5995.
  • [16] Trchová M., Konyushenko E.N., Stejskal J., Kovářová J., Ćirić-Marjanović G., The conversion of polyaniline nanotubes to nitrogen-containing carbon nanotubes and their comparison with multi-walled carbon nanotubes, Polymer Degradation and Stability 2009, 94, 929-938.
  • [17] Rozlívková Z., Trchová M., Exnerová M., Stejskal J., The carbonization of granular polyaniline to produce nitrogen-containing carbon, Synthetic Metals 2011, 161, 1122-1129.
  • [18] Stejskal J., Trchová M., Hromádková J.I., Kovár̆ová J., Kalendová A., The carbonization of colloidal polyaniline nanoparticles to nitrogen-containing carbon analogues, Polymer International 2010, 59, 875-878.
  • [19] Xia Y., Mokaya R., Generalized and facile synthesis approach to N-doped highly graphitic mesoporous carbon materials, Chemistry of Materials 2005, 17, 1553-1560.
  • [20] Fuertes A.B., Centeno T.A., Mesoporous carbons with graphitic structures fabricated by using porous silica materials as templates and iron-impregnated polypyrrole as precursor, Journal of Materials Chemistry 2005, 15, 1079-1083.
  • [21] Yang C.-M., Weidenthaler C., Spliethoff B., Mayanna M., Schüth F., Facile template synthesis of ordered mesoporous carbon with polypyrrole as carbon precursor, Chemistry of Materials 2005, 17, 355-358.
  • [22] Lu A., Kiefer A., Schmidt W., Schüth F., Synthesis of polyacrylonitrile-based ordered mesoporous carbon with tunable pore structures, Chemistry of Materials 2004, 16, 100-103.
  • [23] Kruk M., Kohlhaas K.M., Dufour B., Celer E.B., Jaroniec M., Matyjaszewski K., Ruoff R.S., Kowalewski T., Partially graphitic, high-surface-area mesoporous carbons from polyacrylonitrile templated by ordered and disordered mesoporous silicas, Microporous and Mesoporous Materials 2007, 102, 178-187.
  • [24] Anastas P.T., Warner J.C., Green Chemistry: Theory and Practice, Oxford University Press, 1998.
  • [25] Ravi Kumar M.N.V., A review of chitin and chitosan applications, Reactive and Functional Polymers 2000, 46, 1-27.
  • [26] Ilnicka A., Lukaszewicz J.P., Discussion remarks on the role of wood and chitin constituents during carbonization, Frontiers in Materials 2015, 2.
  • [27] Kucinska A., Cyganiuk A., Lukaszewicz J.P., A microporous and high surface area active carbon obtained by the heat-treatment of chitosan, Carbon 2012, 50, 3098-3101.
  • [28] Ilnicka A., Gauden P.A., Terzyk A.P., Lukaszewicz J.P., Nano-structured carbon matrixes obtained from chitin and chitosan by a novel method, Journal of Nanoscience and Nanotechnology 2015, 15, 1-9.
  • [29] Ilnicka A., Lukaszewicz J.P., Sposób wytwarzania nanoporowatych węgli aktywnych o wysokiej zawartości azotu, Urząd Patentowy Rzeczpospolitej Polskiej 2015, Patent nr P.396955.
  • [30] Olejniczak A., Lezanska M., Wloch J., Kucinska A., Lukaszewicz J.P., Novel nitrogencontaining mesoporous carbons prepared from chitosan, Journal of Materials Chemistry A 2013, 1, 8961-8967.
  • [31] Leżańska M., Olejniczak A., Pacuła A., Szymański G., Włoch J., The influence of microporosity creation in highly mesoporous N-containing carbons obtained from chitosan on their catalytic and electrochemical properties, Catalysis Today 2014, 227, 223-232.
  • [32] Kucinska A., Golembiewski R., Lukaszewicz J.P., Synthesis of N-Rich activated carbons from chitosan by chemical activation, Science of Advanced Materials 2014, 6, 290-297.
  • [33] Ilnicka A., Lukaszewicz J.P., Synthesis of N-rich microporous carbon materials from chitosan by alkali activation using Na2CO3, Materials Science and Engineering: B 2015, 201, 66-71.
  • [34] Ilnicka A., Walczyk M., Lukaszewicz J.P., The fungicidal properties of the carbon materials obtained from chitin and chitosan promoted by copper salts, Materials Science and Engineering: C 2015, 52, 31-36.
  • [35] Ilnicka A., Walczyk M., Lukaszewicz J.P., Janczak K., Malinowski R., Antimicrobial carbon materials incorporating copper nano-crystallites and their PLA composites, Journal of Applied Polymer Science 2016, 133, n/a-n/a.
  • [36] Wróbel-Iwaniec I., Díez N., Gryglewicz G., Chitosan-based highly activated carbons for hydrogen storage, International Journal of Hydrogen Energy 2015, 40, 5788-5796.
  • [37] Śliwak A., Díez N., Miniach E., Gryglewicz G., Nitrogen-containing chitosan-based carbon as an electrode material for high-performance supercapacitors, Journal of Applied Electrochemistry 2016, 1-11.
  • [38] Ajay K., Abhijit G., Pagona P., Thermal stability study of nitrogen functionalities in a graphene network, Journal of Physics: Condensed Matter 2012, 24, 235503.
  • [39] Meng Q., Wu H., Meng Y., Xie K., Wei Z., Guo Z., High-performance all-carbon yarn microsupercapacitor for an integrated energy system, Advanced Materials 2014, 26, 4100-4106.
  • [40] Wen Y., Ma J., Chen J., Shen C., Li H., Liu W., Carbonaceous sulfur-containing chitosan– Fe(III): A novel adsorbent for efficient removal of copper (II) from water, Chemical Engineering Journal 2015, 259, 372-380.
  • [41] Ling Z., Wang G., Zhang M., Fan X., Yu C., Yang J., Xiao N., Qiu J., Boric acid-mediated B,Ncodoped chitosan-derived porous carbons with a high surface area and greatly improved supercapacitor performance, Nanoscale 2015, 7, 5120-5125.
  • [42] Hao P., Zhao Z., Leng Y., Tian J., Sang Y., Boughton R.I., Wong C.P., Liu H., Yang B., Graphene- based nitrogen self-doped hierarchical porous carbon aerogels derived from chitosan for high performance supercapacitors, Nano Energy 2015, 15, 9-23.
  • [43] Fan X., Zhang L., Zhang G., Shu Z., Shi J., Chitosan derived nitrogen-doped microporous carbons for high performance CO2 capture, Carbon 2013, 61, 423-430.
  • [44] Hu Y., Wang H., Yang L., Liu X., Zhang B., Liu Y., Xiao Y., Zheng M., Lei B., Zhang H., Preparation of chitosan-based activated carbon and its electrochemical performance for EDLC, Journal of the Electrochemical Society 2013, 160, H321-H326.
  • [45] Qu J., Geng C., Lv S., Shao G., Ma S., Wu M., Nitrogen, oxygen and phosphorus decorated porous carbons derived from shrimp shells for supercapacitors, Electrochimica Acta 2015, 176, 982-988.
  • [46] Lota K., Acznik I., Sierczynska A., Lota G., The capacitance properties of activated carbon obtained from chitosan as the electrode material for electrochemical capacitors, Materials Letters 2016, 173, 72-75.
  • [47] Peng H., Ma G., Sun K., Zhang Z., Yang Q., Lei Z., Nitrogen-doped interconnected carbon nanosheets from pomelo mesocarps for high performance supercapacitors, Electrochimica Acta 2016, 190, 862-871.
  • [48] Schnepp Z., Zhang Y., Hollamby M.J., Pauw B.R., Tanaka M., Matsushita Y., Sakka Y., Dopedcarbon electrocatalysts with trimodal porosity from a homogeneous polypeptide gel, Journal of Materials Chemistry A 2013, 1, 13576-13581.
  • [49] Wang H., Wang K., Song H., Li H., Ji S., Wang Z., Li S., Wang R., N-doped porous carbon material made from fish-bones and its highly electrocatalytic performance in the oxygen reduction reaction, RSC Advances 2015, 5, 48965-48970.
  • [50] Watson V.J., Nieto Delgado C., Logan B.E., Improvement of activated carbons as oxygen reduction catalysts in neutral solutions by ammonia gas treatment and their performance in microbial fuel cells, Journal of Power Sources 2013, 242, 756-761.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b544f2c8-8d13-48c0-9340-fa8e921cf822
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.