

is.pcz.pl/124/index/czasopismo_inzynieria_i_ochrona_rodowiska.html

Anna ILNICKA, Bartłomiej WASINIAK, Jerzy P. ŁUKASZEWICZ

Uniwersytet Mikołaja Kopernika w Toruniu, Wydział Chemii Katedra Chemii Materiałów, Adsorpcji i Katalizy ul. J. Gagarina 7, 87-100 Toruń e-mail: jerzy_lukaszewicz@o2.pl

Chitozan w syntezie węgli aktywowanych wzbogaconych w azot - najnowsze osiągnięcia

Chitosan in the Synthesis of Nitrogen-doped Activated Carbons -Recent Achievements

The paper reviews several methods for the preparation of chitosan-originated nitrogenrich activated carbons N_AC. The review considers the historical aspect of the synthesis development including the first scientific paper and patent application in this field. The relationship between the method for N_AC manufacturing from chitosan and their textural properties as surface area, total pore volume, and the nature of the porosity is presented. The influence of the N_AC obtaining method on the nitrogen content in the carbons is discussed, too. Identified potential applications of chitosan-originated N_ACs are described in relation to their basic physical and chemical properties.

Keywords: chitosan, nitrogen-doped carbon, synthesis, applications

Wstęp

Węgle aktywowane o wysokiej zawartości azotu (ang. *N-rich Activated Carbons* - N_AC) opisywane są w literaturze zarówno w kontekście ich otrzymywania, co jest pewnym wyzwaniem technologicznym, jak i właściwości ukierunkowanych na zastosowania w praktyce [1-3]. W przeszłości koncentrowano się na zastosowaniu N_AC jako specyficznych adsorbentów o znacznej zasadowości powierzchni wynikającej z obecności w powierzchniowych atomach azotu pary elektronowej aktywnej w szeregu reakcji. W szczególności są to adsorpcja tlenków o charakterze kwaśnym jak CO₂ i SO₂ w fazie gazowej oraz wiązanie (kompleksowanie) kationów metali przejściowych w fazie ciekłej [1-3]. W takim ujęciu N_AC mają zastosowanie w szeroko rozumianej ochronie środowiska oraz ochronie zdrowia i życia ludzkiego. W ochronie środowiska N_AC mogą znaleźć zastosowanie jako efektywne adsorbenty metali ciężkich z roztworów wodnych oraz jako adsorbenty tlenków o charakterze kwasowym: CO₂ i SO₂ [4-7]. Zainteresowanie N_AC wzrosło po stwierdzeniu, że są one zdolne do odwracalnego wiązania jonów w superkondensatorach [2, 8]. Kolejnym impulsem do intensyfikacji badań było udowodnienie, że wybrane azotowe grupy funkcyjne mogą pełnić rolę centrów katalitycznych w reakcji redukcji tlenu (ang. *Oxygen Reduction Reaction* - ORR) i/lub stabilizować reaktywne atomy węgla, również katalizujące ten proces w środowisku ciekłym [9, 10]. Reakcja ta była przedmiotem badań eksperymentalnych oraz studiów teoretycznych [10, 11]. Szereg prac przypisuje kluczową rolę w tym procesie tylko wybranym azotowym grupom funkcyjnym, tj. pirolowym i pirydynowym [10].

N_AC można otrzymać jedną z trzech podstawowych metod:

- 1) wtórne wzbogacanie w azot wcześniej wytworzonego AC w fazie gazowej, np. przez kontakt z NH₃ w podwyższonej temperaturze [12],
- 2) wtórne wzbogacanie w azot wcześniej wytworzonego AC w fazie ciekłej przez impregnację związkami bogatymi w azot i ponowne wygrzewanie [13],
- karbonizację surowca organicznego bogatego w azot i założenie, że część azotu zawartego w prekursorze zostanie przeniesiona do finalnego produktu, czyli AC.

Metody 1 i 2 prowadzą do powierzchniowego wzbogacenia AC w azot, podczas gdy rezultatem metody 3 jest wzbogacenie AC w azot w całej jego masie. Dotychczas stosowanie metody 3 polegało głównie na beztlenowej pirolizie szeregu syntetycznych polimerów. Synteza N_AC z tego typu prekursorów skutkuje węglami o korzystnych parametrach, jak rozwinięte pole powierzchni właściwej S_{BET} oraz względnie wysoka zawartość azotu C_{N%}. Przykładowe liczbowe wartości S_{BET} oraz C_{N%} dla N_AC otrzymanych z syntetycznych polimerów zawarto w tabeli 1 (skrót b.d. oznacza brak danych).

 $Tabela 1. \label{eq:BET} Przykładowe wartości pola powierzchni S_{BET} oraz zawartości azotu $C_{N\%}$ w węglach otrzymanych z polimerów syntetycznych $Table 1 F_{AB} and F_{AB} an$

Table 1.	: 1. Example values of surface area S_{BET} and nitrogen content $C_{N\%}$ in carbons obtain from synthetic polymers					
Г		~				

Polimer syntetyczny	$\frac{S_{BET}}{m^2/g}$	C _{N%}	Literatura
Polianilina	325÷514	6,7÷10,89 at.%	[14]
Polianilina	115÷670	6,5÷12,6% wag.	[15]
Polianilina	24÷94,2	8,7÷13,3% wag.	[16]
Polianilina	b.d.	10,3÷14,9% wag.	[17]
Polianilina	200÷205	2,1÷10,8% wag.	[18]
Acetonitryl	286÷1034	7,0÷8,8% wag.	[19]
Polipirol	1060÷1170	4,24÷4,72% wag.	[20]
Polipirol	1560	5,5 at.%	[21]
Poliakrylonitryl	644÷800	C/N 5,75÷22,26 at.%	[22]
Poliakrylonitryl	520÷840	b.d.	[23]

Korzystne wartości S_{BET} i $C_{N\%}$ nie zmieniają faktu, że taki dobór surowców do otrzymywania N_AC oraz zastosowana procedura wytwarzania pozostają przeważnie w sprzeczności z tendencją do obniżenia kosztów wytwarzania, a przede

wszystkim nie spełniają zasad "Zielonej Chemii" [24]. Podobne wątpliwości nastręcza stosowanie metod 1 i 2, chociaż ich niekwestionowaną zaletą jest użycie powszechnie stosowanych AC wytworzonych tradycyjnymi metodami akceptowanymi ze względów ekonomicznych, jak również środowiskowych.

Celem artykułu jest podsumowanie najnowszych kierunków w syntezie N_AC na drodze karbonizacji nowych prekursorów bogatych w azot. Przegląd stosowanych metod i prekursorów uwzględnia nadanie N_AC korzystnych właściwości użytkowych oraz dostosowanie do zasad "Zielonej Chemii".

Chitozan

Chitozan jest bogatym w azot polimerem pochodzenia biologicznego, który nie jest jednak w naturze dostępny wprost. Jest on otrzymywany przez deacetylację występującego w przyrodzie biopolimeru, tj. chityny. W praktyce chityna jest pozyskiwana z pancerzy odławianych skorupiaków, takich jak kraby i kryl. Jednak pozyskana chityna jest materiałem kompozytowym zawierającym właściwy biopolimer oraz inne składniki. W efekcie chityna jest materiałem nierozpuszczalnym w wodzie [25]. Ogranicza to w bardzo dużym stopniu możliwości jej przekształcania w inne materiały, np. N_AC. Zarówno chityna, chitozan, jak i celuloza wykazują daleko idące podobieństwa strukturalne (rys. 1). W porównaniu do celulozy w chitozanie, grupy wodorotlenowe są zastąpione przez grupy aminowe i dlatego chitozan jest potencjalnym prekursorem N_AC, gdyż jest bogaty w azot. Druga różnica polega na rozpuszczalności chitozanu w wodnych roztworach wybranych kwasów przy jednoczesnym braku rozpuszczalności celulozy.

Rys. 1. Wzór strukturalny celulozy, chityny i chitozanu Fig. 1. Structural formula of cellulose, chitin, and chitosan

Jak wykazały dotychczas prowadzone badania, prosta karbonizacja czystego chitozanu i czystej celulozy prowadzi do otrzymywania materiałów węglowych o bardzo słabo rozwiniętej porowatości [26, 27]. Z kolei karbonizacja surowej chityny pozyskanej ze skorupiaków (zawiera czystą chitynę) oraz drewna (zawiera czystą celulozę) prowadzi od razu do wykształcenia struktury porowatej [28]. Powodem jest występowanie w tych złożonych materiałach substancji pełniących rolę naturalnych miękkich templatów usuwanych w drodze zgazowania w czasie termicznej obróbki surowca (karbonizacja beztlenowa) [26]. Uwalnianie naturalnych templatów najprawdopodobniej następuje już po ukształtowaniu zaczątku matrycy węglowej z poddawanej termicznemu rozkładowi celulozy. W przypadku karbonizacji drewna rolę naturalnego templatu pełni m.in. hemiceluloza, rozkładająca się w niższej temperaturze niż celuloza.

Czysty chitozan jest pozbawiony substancji, które mogłyby pełnić rolę naturalnego templatu, i dlatego podjęta próba syntezy N_AC z chitozanu bazowała na idei zastosowania metody templatowej. Do 2012 roku nie odnotowano w literaturze prób uzyskania N_AC z chitozanu z zastosowaniem tej metody. Wyżej wspomniany pomysł badawczy był istotną nowością naukową i technologiczną, potwierdzoną uzyskaniem patentu przez autorów artykułu [29]. W 2012 roku ukazała się też publikacja przedstawiająca istotę wynalazku i nowej technologii [27], która polegała na dodawaniu do chitozanu szeregu reagentów, suszeniu oraz karbonizacji prekursora w różnych formach [22, 24]. Opis etapów pierwszej metody otrzymywania węgli z chitozanu zawarto w tabeli 2.

E.			<u> </u>
Etap	Odczynnik	Cel	Skutek
1	Wodny roztwór HCl z zachowa- niem pH ok. 7	Protonizacja grup –NH ₂ do –NH ₃ ⁺ i nadanie właściwości hydrofilowych	Wchłanianie wody i tworzenie gęstego żelu
2	Woda destylowana	Rozrzedzenie żelu chitozanowego i mieszanie żelu z innymi roztworami	Rozrzedzony i jednorodny żel chitozanowy lub pasta
3	Wodny roztwór Na ₂ CO ₃	Wprowadzenie substancji zdolnej do tworzenia nanokrystalitów (twardy templat)	Roztwór właściwy Na ₂ CO ₃ w żelu chitozanowym
4	Suszenie	Usunięcie nadmiaru wody i krystali- zacja templatu w postaci nanokrysta- litów Na ₂ CO ₃	Suchy żel chitozanowy z wbudowanymi nanokrys- talitami templatu Na ₂ CO ₃
5	Karbonizacja beztlenowa	Uzyskanie matrycy węglowej z wbu- dowanymi nanokrystalitami Na ₂ CO ₃	Nieporowata matryca węglowa zawierająca azot
6	Trawienie st. HCl	Usuniecie nanokryształów templatu Na ₂ CO ₃	Surowa porowata matryca węglowa, tj. N_AC
7	Płukanie wodą destylowaną	Odmycie zanieczyszczeń rozpusz- czalnych w wodzie	N_AC o rozwiniętej powierzchni właściwej i znacznej zawartości azotu bez zanieczyszczeń

 Tabela 2. Etapy pierwszej templatowej metody otrzymywania N_AC z chitozanu (metoda A)

 Table 2. The stages of the first template method for synthesis of N_AC from chitosan (A method)

Powyższa metoda może być zmodyfikowana, począwszy od etapu 3, według co najmniej pięciu scenariuszy (tab. 3).

Metoda	Modyfikowany etap bazowej metody A	Opis modyfikacji	
В	3	Rezygnacja z roztworu Na ₂ CO ₃ . Dodanie stałego i nierozpuszczalnego templatu, np. CaCO ₃ lub SiO ₂ . W przypadku templatu SiO ₂ w etapie 6 należy zastosować roztwór HF.	[30, 31]
С	3	Rezygnacja z roztworu Na ₂ CO ₃ . Dodanie wodnego roztworu ZnCl ₂ . Wówczas etapy 6 i 7 są połączone i polegają na długotrwałym wypłukiwaniu gorącą wodą destylowaną aż do zaniku obecności jonów chlorkowych.	[32]
D	3	Rezygnacja z roztworu Na ₂ CO ₃ . Dodanie wodnego roztworu H ₃ PO ₄ . Wówczas etapy 6 i 7 są połączone i polegają na długotrwałym wypłukiwaniu gorącą wodą destylowaną aż do zaniku obecności jonów fosforanowych.	[28]
Е	3	We wszystkich wariantach metody syntezy, tj. A, B, C lub D, stosuje się opcjonalnie dodatek substancji mało- cząsteczkowej rozpuszczalnej w wodzie i zawierającej azot w celu zwiększenia zawartości azotu w N_AC.	[33]
F	3	We wszystkich wariantach metody syntezy, tj. A, B, C, D lub E, stosuje się dodatek rozpuszczalnych soli metali w celu nadania N_AC nowych właściwości, np. katali- tycznych lub biobójczych.	[34, 35]
G	1	Surowy chitozan w stanie stałym lub po przeprowadze- niu do postaci żelu jest karbonizowany w celu uzyskania nieporowatego N_AC (pierwszy etap). W drugim etapie surowy N_AC jest wygrzewany z silnymi zasadami, np. NaOH lub KOH. Synteza kończy się odmyciem zanie- czyszczeń rozpuszczalnych w wodzie.	[36]
Н	1	Surowy chitozan w stanie stałym lub po przeprowadze- niu do postaci żelu jest karbonizowany w celu uzyskania nieporowatego N_AC (pierwszy etap). W drugim etapie surowy N_AC iest wyerzewany w kontakcie z CO ₂ .	[37]

Tabela 3. Możliwe modyfikacje metody A otrzymywania N_AC z chitozanuTable 3. Possible modifications of the A method for N_AC synthesis from chitosan

Celem metody A było rozwinięcie powierzchni materiałów węglowych uzyskiwanych w drodze karbonizacji chitozanu. Modyfikacje B, C, D zmierzały do uzyskania lepszych parametrów strukturalnych N_AC, jak dalsze rozwinięcie pola powierzchni, zwiększenie sumarycznej objętości porów, zwiększenie udziału mezoporów. Celem modyfikacji E było zwiększenie zawartości azotu zwłaszcza w przypadku stosowania temperatury karbonizacji powyżej 800°C, kiedy zawartość azotu wyraźnie spada wskutek termicznego rozkładu azotowych grup funkcyjnych [38]. Zastosowanie modyfikacji F w postaci dodatku roztworu jonów Cu^{2+} prowadzi m.in. do nadania N_AC nowych właściwości grzybobójczych i bakteriobójczych.

Tabela 4 zawiera podsumowanie podstawowych właściwości N_AC uzyskanych wg metod A-F. Wymienione metody zostały opracowane i po raz pierwszy zastosowane przez autorów niniejszej pracy w latach 2012-2016. Metody G i H zostały opracowane przez innych autorów (tab. 3).

Dotychczasowe badania wykazały, że wprowadzenie dodatkowych ilości azotu, tj. podwyższenie $C_{N\%}$, jest możliwe, nawet w spektakularny sposób, przez zastosowanie metody E i użycie np. mocznika jako małocząsteczkowego nośnika azotu. Wprawdzie zawartość $C_{N\%}$ wzrasta nawet powyżej 13% wag., lecz towarzyszy temu dramatyczne pogorszenie parametrów strukturalnych, zmniejszenie pola powierzchni S_{BET} czy spadek sumarycznej objętości porów (tab. 4). Parametry te ulegają 2÷3-krotnemu zmniejszeniu w porównaniu do analogicznych N_AC, uzyskanych bez stosowania metody F i mocznika.

Tabela 4. Związek między zastosowaną metodą syntezy N_AC (od A do F) a ich wybranymi właściwościami fizykochemicznymi węgli

Prekursor	Modyfikacja/T (°C)/t (h)	$\frac{S_{BET}}{m^2/g}$	N % wag.	V _t cm ³ /g	V _{me} cm ³ /g	Literatura
CH+Na ₂ CO ₃	A/600/1	10÷440	b.d.	b.d.	b.d.	[27]
CH+SiO ₂	B+C+H/9004	84÷317	4,36÷7,27	1,66÷4,10	0,75÷3,75	[31]
CH+SiO ₂	B/900/4	608÷1337	2,17÷5,83	1,04÷4,31	1,50÷4,51	[30]
CH+ZnCl ₂	C/600-800/1	583÷1931	4,5÷7,5	0,31÷1,33	$0,008 \div 0,507$	[32]
CH+Na ₂ CO ₃	A/600-900/1	441÷1148	2,8÷6,5	0,18÷0,70	>1%	[33]
CH+Na ₂ CO ₃ +mocznik	E/600/1	121÷430	9,4÷13,1	0,11÷0,21	>1%	[33]
CH+H ₃ PO ₄	D/600/1	970÷1484	4,8÷7,7	0,439÷1,543	0,408÷1,515	[28]
CH+ZnCl ₂ +Cu(NO ₃) ₂	C+F	102÷1159	5,0÷7,8	b.d.	b.d.	[34]
CH+Cu(NO ₃) ₂	Brak templa- tu/700/1	102÷123	7,8÷7,9	b.d.	b.d.	[35]

 Table 4.
 The relationship between synthesis of N_AC (from A to F methods) and selected physico-chemical properties of the carbons

Zasadniczo aktywacja z wykorzystaniem roztworu Na₂CO₃ prowadzi do otrzymywania węgli mikroporowatych bez znaczącego udziału mezoporów (metody A i E). Podobnie aktywacja za pomocą ZnCl₂ (metoda C) prowadzi do otrzymania N_AC w formie mikroporowatej matrycy węglowej wzbogaconej w azot na poziomie 4,5÷7,5% wag., którego zawartość zmienia się głównie w zależności od temperatury karbonizacji.

Mezoporowate N_AC mogą znaleźć zastosowania praktyczne w urządzeniach zawierających fazę ciekłą (adsorpcja z roztworu, elektrody w elektrochemicznych źródłach prądu). Ich synteza jest w centrum zainteresowania zespołów badawczych pracujących nad budową superkondensatorów, ogniw paliwowych i baterii metal-powietrze. Metoda syntezy z templatem stałym SiO₂ (metoda B) pozwala na uzy-

skanie węgli mezoporowatych o względnie rozwiniętym polu powierzchni (jak na tego typu materiały węglowe) rzędu 608÷1337 m²/g. Równocześnie uzyskuje się znaczące objętości mezoporów nawet powyżej 4 cm³/g. Zawartość azotu znajduje się w przedziale 2,17÷5,83% wag., czyli na poziomie pozwalającym nazywać te węgle wysokoazotowymi.

Nieco mniej spektakularne wyniki w zakresie rozwinięcia struktury porowatej (sumaryczna objętość porów) osiągnięto przy zastosowaniu metody D, tj. z użyciem H₃PO₄ jako aktywatora. Otrzymane N_AC są bogate w azot (4,8÷7,7% wag.), mają większe pola powierzchni niż aktywowane SiO₂ (970÷1484 m²/g), lecz, jak wspomniano, mniejszą sumaryczną objętość porów (do ok. 1,5 cm³/g). Badania wykazały, że w zależności od warunków otrzymywania obserwuje się stopniowe przejście od N_AC o charakterze mikroporowatym do N_AC o charakterze mezoporowatym. Ponadto średnica porów w N_AC uzyskanych z użyciem SiO₂ wynosi ok. 20 nm, podczas gdy dla materiałów uzyskanych z użyciem H₃PO₄ mieści się w granicach od 0,7 do 2 nm (położenie maksimów na krzywej rozkładu wielkości porów (ang. *Pore Size Distribution* - PSD). W takim przypadku uzyskanie sumarycznej objętości mezoporów 1,5 cm³/g jest istotnym osiągnięciem.

Dodatek roztworu jonów metali (metoda F) nadaje tak otrzymanym materiałom nowe właściwości, np. biobójcze, które potwierdzono w badaniach mikrobiologicznych w stosunku do wybranych szczepów bakterii i grzybów. Dla utrzymania tych właściwości nie jest konieczne rozwijanie powierzchni N_AC. Wysoką aktywność biobójczą odnotowano dla N_AC (otrzymywanie z dodatkiem jonów Cu²⁺) zarówno o rozwiniętym polu powierzchni (102÷1159 m²/g - N_AC otrzymany wg metody C), jak i o małym polu powierzchni (102÷123 m²/g - N_AC otrzymany bez użycia aktywatora ZnCl₂). Wykorzystanie chitozanu w tych badaniach powoduje zaadsorbowanie jonów Cu²⁺ w prekursorze, co jest możliwe z uwagi na obecność grup aminowych w chitozanie. Karbonizacja tak przygotowanego prekursora prowadzi do utworzenia równomiernie rozproszonych w matrycy węglowej nanokrystalitów tlenku miedzi(II), miedzi metalicznej, a przede wszystkim tlenku miedzi(I), który jest odpowiedzialny za kontaktową aktywność biobójczą.

Korzystne właściwości N_AC uzyskane dzięki stosowaniu chitozanu jako prekursora oraz metod A-F lub innych przyczyniły się do upowszechnienia tematyki chitozanowej w syntezie N_AC przedstawianej przez innych autorów. Można nawet mówić o znaczącym przyspieszeniu prac nad syntezą N_AC z chitozanu w latach 2015-2016.

Tabela 5 zawiera informacje o 11 najnowszych zastosowaniach chitozanu jako prekursora w syntezie N_AC, tj. opis zastosowanej metodologii wytwarzania wraz z opisem zbadanych zastosowań otrzymanych materiałów. Uwagę zwraca zastosowanie procedur dwuetapowych, polegających na wtórnej aktywacji otrzymanego karbonizatu. W tej metodzie stosowano kalcynację z mocnymi zasadami, np. KOH, lub aktywację w fazie gazowej za pomocą CO_2 . Zastosowanie wtórnej aktywacji prowadzi do znacznego rozwinięcia powierzchni, nawet do poziomu 3500 m²/g. Jednakże bardzo często nie precyzuje się zawartości azotu w tak otrzymanych materiałach.

Rok	Prekursor	Synteza: metoda /T (°C)/t (h)	Uzyskany N_AC	Zastosowanie	Literatura
2014	CH + SWNT (jednościen- ne nanorurki węglowe)	B/600/2	Mezoporowaty N_AC, przewodzący kompozyt $S_{BET} = 628 \text{ m}^2/\text{g},$ $C_{N\%} = \text{b.d.}$	Superkonden- sator	[39]
2015	CH + FeCl ₃	A+F/450/1	Nieporowaty N_AC $S_{BET} = 4,7 \div 62,8 \text{ m}^2/\text{g},$ $C_{N\%} = \text{b.d.}$	Usuwanie jonów Cu ²⁺ z wody	[40]
2015	CH + H ₃ BO ₃	A/800/1	$\begin{array}{l} Mikro/mezoporowaty\\ N_AC, przewodząca\\ matryca węglowa\\ S_{BET}=3\div710\ m^2/g,\\ C_{N\%}=8,19\ \%\ wag. \end{array}$	Superkonden- sator	[41]
2015	CH, wtórna aktywacja KOH	-/800/3 później kalcynacja z KOH/700-1000/2	$\begin{array}{l} Mikro/mezoporowaty\\ N_AC zawierający\\ nanostruktury grafenowe\\ S_{BET} = do 2435 \ m^2/g,\\ C_{N\%} = b.d. \end{array}$	Superkonden- sator	[42]
2016	CH + aktywacja CO ₂	-/900/15 min póżniej aktywacja CO ₂ /900/b.d.	Mikroporowaty N_AC, $S_{BET} = do \ 1101 m^2/g,$ $C_{N\%} = do \ 5,4\% wag.$	Superkonden- sator	[37]
2015	CH + wtórna aktywacja KOH	-/700-1000/30 min później kalcynacja z KOH/700-800/1	Mikroporowaty N_AC, $S_{BET} = 922 \div 3066 \text{ m}^2/\text{g},$ $C_{N\%} = \text{b.d.}$	Akumulacja wodoru	[36]
2013	$CH + K_2CO_3$	A/600-800/1	$\begin{array}{l} Mikroporowaty \ N_AC \\ S_{BET} = 1,4 \div 2469 \ m^2/g, \\ C_{N\%} = 1,29 \div 7,60\% \ wag. \end{array}$	Akumulacja CO ₂	[43]
2013	CH + wtórna aktywacja NaOH	-/400-600/1 później kalcynacja z NaOH/400-600/1	Mikroporowaty N_AC, $S_{BET} = do 3500 m^2/g,$ $C_{N\%} = do 5,4\%$ wag.	Superkonden- sator	[44]
2015	Pancerz krewetek + H ₃ PO ₄	-/400-600/1	Mezoporowaty N_AC $S_{BET} = 38 \div 774 \text{ m}^2/\text{g},$ $C_{N\%} = 2,9 \div 3,9\%$ wag.	Superkonde- sator	[45]
2016	CH, wtórna aktywacja KOH	-/650/1 później kalcynacja z KOH/750-850/	$\label{eq:second} \begin{split} & \text{Mezoporowaty N}_AC\\ & \text{S}_{\text{BET}} = 2397 \div 2807 \text{ m}^2/\text{g},\\ & \text{C}_{\text{N\%}} = 0,2 \div 0,4\\ & \text{Karbonizowany czysty CH}\\ & \text{S}_{\text{BET}} = 1,3 \text{ m}^2/\text{g}\\ & \text{C}_{\text{N\%}} = \text{b.d.} \end{split}$	Superkonden- sator	[46]
2016	Ścinki pomelo + CaCl ₂ + Mocznik	B+E/800/2	Mezoporowaty N_AC w formie nanopłatków $S_{BET} = 974 \text{ m}^2/\text{g},$ $C_{N\%} = 9,12\%$ wag.	Superkonden- sator	[47]

Tabela 5. Aktualne kierunki w syntezie N_AC z wykorzystaniem chitozanuTable 5. Recent directions in the synthesis of N_AC by means of chitosan

Chitozan i chityna nie są jedynymi odnawialnymi i naturalnymi prekursorami dla otrzymywania N_AC. Literatura dostarcza opisu szeregu innych prekursorów, jak białka roślinne, białka zwierzęce, szkielety roślin, fragmenty roślin, żelatyna, ości ryb czy łupiny orzecha kokosowego itp. [48-50]. Jak dotychczas, użycie tych prekursorów ma charakter jednostkowy dla poszczególnych wymienionych materiałów, dlatego też nie jest możliwe przygotowanie raportu o aktualnym stanie badań jak w przypadku chitozanu.

Podsumowanie

Zastosowanie chitozanu do otrzymywania bogatych w azot węgli aktywowanych N_AC datuje się od 2012 roku, kiedy to pojawiły się pierwsze opublikowane prace uzupełnione o zgłoszenia patentowe. Wykorzystanie tego surowca ma szereg zalet w stosunku do syntetycznych prekursorów fazy węglowej, głównie ze względu na odnawialny charakter tego materiału oraz wysokie zawartości azotu w otrzymanych z chitozanu N_AC. W latach 2012-2016 można zaobserwować wyraźny wzrost liczby opublikowanych prac naukowych wykorzystujących chitozan do otrzymywania N_AC, które mogą być stosowane jako: materiał elektrodowy w superkondensatorach, ogniwach paliwowych oraz bateriach metal-powietrze, efektywny adsorbent wodoru, adsorbent zanieczyszczeń wody oraz wychwytu CO₂. Większość prac ukazujących się w latach 2015-2016 obok wkładu w rozwój syntezy N_AC z chitozanu prezentuje bardzo obiecujące wyniki w zakresie praktycznych zastosowań tych materiałów. Szczególnie wiele uwagi poświęca się zastosowaniom elektrochemicznym z uwzględnieniem zdolności tych węgli do katalizowania reakcji redukcji tlenu ORR.

Literatura

- Jia Y.F., Xiao B., Thomas K.M., Adsorption of metal ions on nitrogen surface functional groups in activated carbons, Langmuir 2002, 18, 470-478.
- [2] Li B., Dai F., Xiao Q., Yang L., Shen J., Zhang C., Cai M., Nitrogen-doped activated carbon for a high energy hybrid supercapacitor, Energy & Environmental Science 2016, 9, 102-106.
- [3] Zhao Z., Wang Y., Li M., Yang R., High performance N-doped porous activated carbon based on chicken feather for supercapacitors and CO₂ capture, RSC Advances 2015, 5, 34803-34811.
- [4] Chen C., Kim J., Ahn W.-S., Efficient carbon dioxide capture over a nitrogen-rich carbon having a hierarchical micro-mesopore structure, Fuel 2012, 95, 360-364.
- [5] Li P.-Z., Zhao Y., Nitrogen-rich porous adsorbents for CO₂ capture and storage, Chemistry An Asian Journal 2013, 8, 1680-1691.
- [6] Raymundo-Piñero E., Cazorla-Amorós D., Linares-Solano A., The role of different nitrogen functional groups on the removal of SO₂ from flue gases by N-doped activated carbon powders and fibres, Carbon 2003, 41, 1925-1932.
- [7] Xiao B., Thomas K.M., Adsorption of aqueous metal ions on oxygen and nitrogen functionalized nanoporous activated carbons, Langmuir 2005, 21, 3892-3902.
- [8] Deng Y., Xie Y., Zou K., Ji X., Review on recent advances in nitrogen-doped carbons: preparations and applications in supercapacitors, Journal of Materials Chemistry A 2016, 4, 1144-1173.

- [9] Wei Q., Tong X., Zhang G., Qiao J., Gong Q., Sun S., Nitrogen-doped carbon nanotube and graphene materials for oxygen reduction reactions, Catalysts 2015, 5, 1574.
- [10] Zhang B., Wen Z., Ci S., Mao S., Chen J., He Z., Synthesizing nitrogen-doped activated carbon and probing its active sites for oxygen reduction reaction in microbial fuel cells, ACS Applied Materials & Interfaces 2014, 6, 7464-7470.
- [11] Sidik R.A., Anderson A.B., Subramanian N.P., Kumaraguru S.P., Popov B.N., O2 reduction on graphite and nitrogen-doped graphite: Experiment and theory, The Journal of Physical Chemistry B 2006, 110, 1787-1793.
- [12] Stöhr B., Boehm H.P., Schlögl R., Enhancement of the catalytic activity of activated carbons in oxidation reactions by thermal treatment with ammonia or hydrogen cyanide and observation of a superoxide species as a possible intermediate, Carbon 1991, 29, 707-720.
- [13] Stavropoulos G.G., Samaras P., Sakellaropoulos G.P., Effect of activated carbons modification on porosity, surface structure and phenol adsorption, Journal of Hazardous Materials 2008, 151, 414-421.
- [14] Li L., Liu E., Li J., Yang Y., Shen H., Huang Z., Xiang X., Li W., A doped activated carbon prepared from polyaniline for high performance supercapacitors, Journal of Power Sources 2010, 195, 1516-1521.
- [15] Lei Z., Zhao M., Dang L., An L., Lu M., Lo A.-Y., Yu N., Liu S.-B., Structural evolution and electrocatalytic application of nitrogen-doped carbon shells synthesized by pyrolysis of nearmonodisperse polyaniline nanospheres, Journal of Materials Chemistry 2009, 19, 5985-5995.
- [16] Trchová M., Konyushenko E.N., Stejskal J., Kovářová J., Ćirić-Marjanović G., The conversion of polyaniline nanotubes to nitrogen-containing carbon nanotubes and their comparison with multi-walled carbon nanotubes, Polymer Degradation and Stability 2009, 94, 929-938.
- [17] Rozlívková Z., Trchová M., Exnerová M., Stejskal J., The carbonization of granular polyaniline to produce nitrogen-containing carbon, Synthetic Metals 2011, 161, 1122-1129.
- [18] Stejskal J., Trchová M., Hromádková J.I., Kovářová J., Kalendová A., The carbonization of colloidal polyaniline nanoparticles to nitrogen-containing carbon analogues, Polymer International 2010, 59, 875-878.
- [19] Xia Y., Mokaya R., Generalized and facile synthesis approach to N-doped highly graphitic mesoporous carbon materials, Chemistry of Materials 2005, 17, 1553-1560.
- [20] Fuertes A.B., Centeno T.A., Mesoporous carbons with graphitic structures fabricated by using porous silica materials as templates and iron-impregnated polypyrrole as precursor, Journal of Materials Chemistry 2005, 15, 1079-1083.
- [21] Yang C.-M., Weidenthaler C., Spliethoff B., Mayanna M., Schüth F., Facile template synthesis of ordered mesoporous carbon with polypyrrole as carbon precursor, Chemistry of Materials 2005, 17, 355-358.
- [22] Lu A., Kiefer A., Schmidt W., Schüth F., Synthesis of polyacrylonitrile-based ordered mesoporous carbon with tunable pore structures, Chemistry of Materials 2004, 16, 100-103.
- [23] Kruk M., Kohlhaas K.M., Dufour B., Celer E.B., Jaroniec M., Matyjaszewski K., Ruoff R.S., Kowalewski T., Partially graphitic, high-surface-area mesoporous carbons from polyacrylonitrile templated by ordered and disordered mesoporous silicas, Microporous and Mesoporous Materials 2007, 102, 178-187.
- [24] Anastas P.T., Warner J.C., Green Chemistry: Theory and Practice, Oxford University Press, 1998.
- [25] Ravi Kumar M.N.V., A review of chitin and chitosan applications, Reactive and Functional Polymers 2000, 46, 1-27.
- [26] Ilnicka A., Lukaszewicz J.P., Discussion remarks on the role of wood and chitin constituents during carbonization, Frontiers in Materials 2015, 2.
- [27] Kucinska A., Cyganiuk A., Lukaszewicz J.P., A microporous and high surface area active carbon obtained by the heat-treatment of chitosan, Carbon 2012, 50, 3098-3101.

- [28] Ilnicka A., Gauden P.A., Terzyk A.P., Lukaszewicz J.P., Nano-structured carbon matrixes obtained from chitin and chitosan by a novel method, Journal of Nanoscience and Nanotechnology 2015, 15, 1-9.
- [29] Ilnicka A., Lukaszewicz J.P., Sposób wytwarzania nanoporowatych węgli aktywnych o wysokiej zawartości azotu, Urząd Patentowy Rzeczpospolitej Polskiej 2015, Patent nr P.396955.
- [30] Olejniczak A., Lezanska M., Wloch J., Kucinska A., Lukaszewicz J.P., Novel nitrogencontaining mesoporous carbons prepared from chitosan, Journal of Materials Chemistry A 2013, 1, 8961-8967.
- [31] Leżańska M., Olejniczak A., Pacuła A., Szymański G., Włoch J., The influence of microporosity creation in highly mesoporous N-containing carbons obtained from chitosan on their catalytic and electrochemical properties, Catalysis Today 2014, 227, 223-232.
- [32] Kucinska A., Golembiewski R., Lukaszewicz J.P., Synthesis of N-Rich activated carbons from chitosan by chemical activation, Science of Advanced Materials 2014, 6, 290-297.
- [33] Ilnicka A., Lukaszewicz J.P., Synthesis of N-rich microporous carbon materials from chitosan by alkali activation using Na₂CO₃, Materials Science and Engineering: B 2015, 201, 66-71.
- [34] Ilnicka A., Walczyk M., Lukaszewicz J.P., The fungicidal properties of the carbon materials obtained from chitin and chitosan promoted by copper salts, Materials Science and Engineering: C 2015, 52, 31-36.
- [35] Ilnicka A., Walczyk M., Lukaszewicz J.P., Janczak K., Malinowski R., Antimicrobial carbon materials incorporating copper nano-crystallites and their PLA composites, Journal of Applied Polymer Science 2016, 133, n/a-n/a.
- [36] Wróbel-Iwaniec I., Díez N., Gryglewicz G., Chitosan-based highly activated carbons for hydrogen storage, International Journal of Hydrogen Energy 2015, 40, 5788-5796.
- [37] Śliwak A., Díez N., Miniach E., Gryglewicz G., Nitrogen-containing chitosan-based carbon as an electrode material for high-performance supercapacitors, Journal of Applied Electrochemistry 2016, 1-11.
- [38] Ajay K., Abhijit G., Pagona P., Thermal stability study of nitrogen functionalities in a graphene network, Journal of Physics: Condensed Matter 2012, 24, 235503.
- [39] Meng Q., Wu H., Meng Y., Xie K., Wei Z., Guo Z., High-performance all-carbon yarn microsupercapacitor for an integrated energy system, Advanced Materials 2014, 26, 4100-4106.
- [40] Wen Y., Ma J., Chen J., Shen C., Li H., Liu W., Carbonaceous sulfur-containing chitosan– Fe(III): A novel adsorbent for efficient removal of copper (II) from water, Chemical Engineering Journal 2015, 259, 372-380.
- [41] Ling Z., Wang G., Zhang M., Fan X., Yu C., Yang J., Xiao N., Qiu J., Boric acid-mediated B,Ncodoped chitosan-derived porous carbons with a high surface area and greatly improved supercapacitor performance, Nanoscale 2015, 7, 5120-5125.
- [42] Hao P., Zhao Z., Leng Y., Tian J., Sang Y., Boughton R.I., Wong C.P., Liu H., Yang B., Graphene-based nitrogen self-doped hierarchical porous carbon aerogels derived from chitosan for high performance supercapacitors, Nano Energy 2015, 15, 9-23.
- [43] Fan X., Zhang L., Zhang G., Shu Z., Shi J., Chitosan derived nitrogen-doped microporous carbons for high performance CO₂ capture, Carbon 2013, 61, 423-430.
- [44] Hu Y., Wang H., Yang L., Liu X., Zhang B., Liu Y., Xiao Y., Zheng M., Lei B., Zhang H., Preparation of chitosan-based activated carbon and its electrochemical performance for EDLC, Journal of the Electrochemical Society 2013, 160, H321-H326.
- [45] Qu J., Geng C., Lv S., Shao G., Ma S., Wu M., Nitrogen, oxygen and phosphorus decorated porous carbons derived from shrimp shells for supercapacitors, Electrochimica Acta 2015, 176, 982-988.
- [46] Lota K., Acznik I., Sierczynska A., Lota G., The capacitance properties of activated carbon obtained from chitosan as the electrode material for electrochemical capacitors, Materials Letters 2016, 173, 72-75.

- [47] Peng H., Ma G., Sun K., Zhang Z., Yang Q., Lei Z., Nitrogen-doped interconnected carbon nanosheets from pomelo mesocarps for high performance supercapacitors, Electrochimica Acta 2016, 190, 862-871.
- [48] Schnepp Z., Zhang Y., Hollamby M.J., Pauw B.R., Tanaka M., Matsushita Y., Sakka Y., Dopedcarbon electrocatalysts with trimodal porosity from a homogeneous polypeptide gel, Journal of Materials Chemistry A 2013, 1, 13576-13581.
- [49] Wang H., Wang K., Song H., Li H., Ji S., Wang Z., Li S., Wang R., N-doped porous carbon material made from fish-bones and its highly electrocatalytic performance in the oxygen reduction reaction, RSC Advances 2015, 5, 48965-48970.
- [50] Watson V.J., Nieto Delgado C., Logan B.E., Improvement of activated carbons as oxygen reduction catalysts in neutral solutions by ammonia gas treatment and their performance in microbial fuel cells, Journal of Power Sources 2013, 242, 756-761.

Streszczenie

W ostatnich pięciu latach bogate w azot polimery naturalne, jak chityna i chitozan oraz inne materiały biologiczne o wysokiej zawartości azotu, są intensywnie badane jako prekursory węgli aktywowanych o wysokiej zawartości azotu. Szczególnie często obiektem badań jest chitozan jako surowiec karbonizacyjny. Zainteresowanie materiałami posiadającymi na powierzchni heteroatomowe grupy funkcyjne, w szczególności polączenia węgiel-azot, wynika głównie z nadziei na zastosowanie ich jako materiału elektrodowego w elektrochemicznych źródłach prądu, takich jak superkondensatory, baterie metal-powietrze czy ogniwa paliwowe. Opublikowane wyniki wskazują na istotnie korzystne właściwości elektrod i całych urządzeń elektrochemicznych zbudowanych w oparciu o wysokoazotowe materiały węglowe otrzymane z chitozanu. Niniejsza praca jest pierwszym w literaturze podsumowaniem stanu badań nad metodami syntezy węgli aktywowanych otrzymywanych z chitozanu w ciągu ostatnich 5 lat.

Słowa kluczowe: chitozan, węgiel wysokoazotowy, synteza, zastosowania