PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Hydrogeochemical modeling of water injection into an oil and gas well under high-pressure high-temperature (HPHT) conditions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Approximately 80% of water extracted from oil and gas deposits in Poland is disposed of by injection into the rock matrix. The aim of the model research was to predict both the hydrochemical reactions of water injected into wells for its disposal and the hydrogeochemical processes in the reservoir formation. The purpose of hydrogeochemical modeling of the hydrocarbon formation was also to determine the potential of formation waters, injection waters, and their mixtures to precipitate and form mineral sediments, and to determine the corrosion risk to the well. In order to evaluate saturation indices and corrosion ratios, the geochemical programs PHREEQC and DownHole SAT were used. The results of hydrogeochemical modeling indicate the possible occurrence of clogging in the well and the near-well zone caused mainly by the precipitation of iron compounds (iron hydroxide Fe(OH)3 and siderite FeCO3) from the formation water due to the presence of high pressures and temperatures (HPHT). There is also a high certainty of the precipitation of carbonate sediments (calcite CaCO3, strontianite SrCO3, magnesite MgCO3, siderite FeCO3) from the injection water within the whole range of tested pressures and temperatures. The model simulations show that temperature increase has a much greater impact on the potential for precipitation of mineral phases than pressure increase.
Rocznik
Strony
419--433
Opis fizyczny
Bibliogr. 87 poz., rys., tab., wykr.
Twórcy
autor
  • Faculty of Geology, University of Warsaw, Żwirki i Wigury 93, PL-02-089 Warszawa, Poland
  • Faculty of Geology, University of Warsaw, Żwirki i Wigury 93, PL-02-089 Warszawa, Poland
  • Faculty of Geology, University of Warsaw, Żwirki i Wigury 93, PL-02-089 Warszawa, Poland
Bibliografia
  • 1. Ahmadun, F.-R., Pendashteh, A., Abdullah, L.C., Biak, D.R.A., Madaeni, S.S. and Abidin, Z.Z. 2009. Review of technologies for oil and gas produced water treatment. Journal of Hazardous Materials, 170, 530-551.
  • 2. Amiri, M. and Moghadasi, J. 2013. The effect of temperature, pressure, and mixing ratio of injection water with formation water on barium sulfate scale formation in Siri Oil-field. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 35, 1316-1327.
  • 3. Ampomah, W., Balch, R.S., Rose-Coss, D., Will, R., Cather, M., Dai, Z. and Soltanian, M.R. 2017. Optimum design of CO2 storage and oil recovery under geological uncertainty. Applied Energy, 195, 80-92.
  • 4. Aregbe, A.G. 2014. Modeling and prediction of scale formation in petroleum reservoir during water injection process. Unpublished B.Sc. thesis, 49 pp., University of Lagos, Nigeria.
  • 5. Banaś, J., Mazurkiewicz, B. and Solarski, W. 2007. Corrosion protection of geothermal water exploitation systems. Technika Poszukiwań Geologicznych, Geotermia, Zrównoważony Rozwój, 2, 1321. [In Polish]
  • 6. Blondes, M.S., Gans, K.D., Rowan, E.L., Thordsen, J.J., Reidy, M.E., Engle, M.A., Kharaka, Y.K. and Thomas, B. 2016. U.S. Geological Survey National Produced Waters Geochemical Database v2.2 (PROVISIONAL) Documentation. Available at: https://www.researchgate.net/publication/312192696.
  • 7. Bradley, H.B. 1992. Petroleum Engineering Handbook (3rd ed.), Chapter 44, 1-43. Society of Petroleum Engineers; Richardson, TX, USA.
  • 8. Brandl, A., Cutler, J., Seholm, A., Sansil, M. and Braun, G. 2011. Cementing solutions for corrosive well environments. SPE Drilling & Completion, 26 (2), 208-219.
  • 9. Choi,Y.S., Nešić, S. and Ling, S. 2011. Effect of H2S on the CO2 corrosion of carbon steel in acidic solutions. Electrochimica Acta, 56, 1752-1760.
  • 10. Cisek, B. and Czernicki, J. 1988. The natural gas field “Przemyśl” and oil and gas prospecting in the Przemyśl area. Przegląd Geologiczny, 36, 334-338. [In Polish with English abstract].
  • 11. Clauser, C. and Villinger, H. 1990. Analysis of conductive and convective heat transfer in a sedimentary basin, demonstrated for the Rheingraben. Geophysical Journal International, 100, 393-414.
  • 12. DownHoleSAT Product Manual. 2008. Predictive modeling for surface waters, brines and mixtures. French Creek Software, Inc.
  • 13. Elgaddafi, R., Ahmed, R. and Shah, S. 2016. Modeling CO2-H2S corrosion of tubular at elevated pressure and temperature. Research Journal of Applied Sciences, Engineering and Technology, 13, 510-524.
  • 14. Elgaddafi, R., Ahmed, R. and Shah, S. 2017. Modeling and experimental studies on CO2-H2S corrosion of API carbon steels under high-pressure. Journal of Petroleum Science and Engineering, 156, 682-696.
  • 15. Ferguson, R.J. 2013. The pot of gold at the end of the rainbow: the chemistry of shale gas fracturing and flowback systems. French Creek Software, Inc. Available at: http://www.frenchcreeksoftware.com/online-library/.
  • 16. Frenier, W.W. and Ziauddin, M. 2010. A Multifaceted Approach for Controlling Complex Deposits in Oil and Gas Production. In: Proceedings, SPE Annual Technical Conference and Exhibition, 19-22 September 2010, Florence, Italy, 285-308.
  • 17. Gaus, I. 2010. Role and impact of CO2 - rock interactions during CO2 storage in sedimentary rocks. International Journal of Greenhouse Gas Control, 4, 73-89.
  • 18. Gąsiński, A. and Poszytek, A. 2013. Petrography of Palaeozoic shale from Baltic basin: implications for recognition and exploitation of shale gas. Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią PAN, 85, 79-88. [In Polish with English abstract].
  • 19. Główny Urząd Statystyczny [Central Statistical Office], 2018. Available at: https://stat.gov.pl/download/gfx/portalinformacyjny/pl/defaultaktualnosci/5515/10/6/1/rocznik_statystyki_miedzynarodowej_2018.pdf.
  • 20. Haghtalab, A., Kamali, M.J. and Shahrabadi, A. 2014. Prediction mineral scale formation in oil reservoirs during water injection. Fluid Phase Equilibria, 373, 43-54.
  • 21. Han, J., Young, D., Colijn, H., Tripathi, A. and Nešić, S. 2009. Chemistry and structure of the passive film on mild steel in CO2 corrosion environments. Industrial & Engineering Chemistry Research, 48, 6296-6302.
  • 22. Han, J., Nešić, S. and Brown, B.N. 2011. Spontaneous passivation observations during scale formation on mild steel in CO2 brines. Electrochimica Acta, 56, 5396-5404.
  • 23. Imran, S.A., Dietz, J.D., Mutoti, G., Taylor, J.S. and Randall, A.A. 2005. Modified Larsons ratio incorporating temperature, water age and electroneutrality effects on red water release. Journal of Environmental Engineering, 131, 1514-1520.
  • 24. Jabczyński, Z., Kozikowski, H., Lenk, T., Dudek, J., Jawor, E., Bielawski, A., Cisek, B., Nycz, R., Wałęcki, I., Jucha, S. and Skarbek, K. 1990. Ilościowa ocena zasobów prognostycznych ropy naftowej i gazu ziemnego w Karpatach polskich i wyznaczonych w ich obrębie strefach perspektywicznych. Technika Poszukiwań Geologicznych, Geotermia, Zrównoważony Rozwój - Geological Exploration Technology, Geothermal Energy, Sustainable Development, 3-4, 61-73.
  • 25. Jakubowicz, P. 2010. Wybrane problemy zagospodarowania odpadowych wód kopalnianych. NAFTA-GAZ, 5, 383-389.
  • 26. Janoha, A. and Kluk, D. 2005. The aspects of chemism of mine waters forced in the absorbing horizons. WUG: bezpieczeństwo pracy i ochrona środowiska w górnictwie, 11, 17-21. [In Polish with English abstract]
  • 27. Jia, H.Y. and Qu, Z.H. 2000. A study on formation scaling tendency for water flooding oilfields. Petroleum Exploration and Development, 28, 89-91.
  • 28. Kan, A.T. and Tomson, M.B. 2012. Scale prediction for oil and gas production. SPE Journal, 17, 362-378.
  • 29. Karnkowski, P.H. 2007. Petroleum provinces in Poland. Przegląd Geologiczny, 55 (12/1), 1061-1067. [In Polish with English abstract]
  • 30. Kermani, M.B. and Morshed, A. 2003. Carbon dioxide corrosion in oil and gas production - a compendium. Corrosion, 59, 659-683.
  • 31. Khormali, A., Petrakov, D.G. and Farmanzade, A.R. 2016. Prediction and inhibition of inorganic salt formation under static and dynamic conditions. Effect of pressure, temperature, and mixing ratio. International Journal of Technology, 7, 943-951.
  • 32. Kluk, D. 2011. Research the process of mixing the reservoir and injected waters with different electrochemical potentials. NAFTA-GAZ, 2, 98-106. [In Polish with English abstract].
  • 33. Kowal, A.L. and Świderska-Bróż, M. 2000. Korozyjność wody. In: Kowal, A.L. and Świderska-Bróż, M. (Eds), Oczyszczanie wody, 693-717. PWN; Warszawa-Wrocław.
  • 34. Krogulec, E., Sawicka, K. and Zabłocki, S. 2018. Water injection into the rock mass: hydrogeological documentation against the background of legal regulations. Przegląd Geologiczny, 66, 222-228. [In Polish with English abstract]
  • 35. Kühn, M., Bartels, J., Pape, H., Schneider, W. and Clauser, C. 2002. Modeling chemical brine-rock interaction in geothermal reservoirs. Water-Rock Interaction, 40, 147-169.
  • 36. Labus, K. and Suchodolska, K. 2017. Predicting the interactions of H2S-CO2 mixtures with aquifer rock, based on experiments and geochemical modeling. Procedia Earth and Planetary Science, 17, 288-291.
  • 37. Lager, A., Webb, K.J., Black, C.J.J., Singleton, M. and Sorbie, K.S. 2008. Low salinity oil recovery - an experimental investigation. Petrophysics. Society of Petrophysicists and Well-Log Analysts, 49, 1-12.
  • 38. Larson, T.E. and Skold, R.V. 1958. Laboratory studies relating mineral quality of water to corrosion of steel and cast iron. Corrosion, 14, 43-46.
  • 39. Lewkiewicz-Małysa, A. and Konopka, E. 2009. Protection of natural rock mass properties as a storage yard of the deposit waste-water. Górnictwo i Geoinżynieria, 33, 177-188. [In Polish with English abstract]
  • 40. Lewkiewicz-Małysa, A. and Winid, B. 2011. Geological and geochemical aspects of wells used for underground injection of formation waters. Rocznik Ochrona Środowiska, 13, 1985-2000. [In Polish with English abstract]
  • 41. Li, J., Tang, M., Ye, Z., Chen, L. and Zhou, Y. 2017. Scale formation and control in oil and gas fields: A review. Journal of Dispersion Science and Technology, 38, 661-670.
  • 42. Li, Z., Zhang, D., Qin, G., Guo, L. and Li, W. 2014. Studies on the scaling of high pressure and low permeability oil reservoir water injection well. Advances in Petroleum Exploration and Development, 8, 1-8.
  • 43. Liang, G.C., Zheng, Y.P., Zhang, J.H., Wang, Z.W. and Jiang, W. 2006. The scaling mechanism and antiscale measures of Lu-Liang oil field production system. Journal of South-western Petroleum University, 28 (6), 69-71.
  • 44. Lu, J., Partin, J.W., Hovorka, S.D. and Wong, C. 2010. Potential risks to freshwater resources as a result of leakage from CO2 geological storage: A batch-reaction experiment. Environmental Earth Sciences, 60, 335-348.
  • 45. Mackay, E.J. and Jordan, M.M. 2005. Impact of brine flow and mixing in the reservoir on scale control risk assessment and subsurface treatment options: Case histories. Journal of Energy Resources Technology, 127, 201-213.
  • 46. Macuda, J., Lewkiewicz-Małysa, A. and Konopka, E. 2007. Technical and technologic aspects of reservoir water injection to the rock mass. NAFTA-GAZ, 24, 799-806. [In Polish with English abstract]
  • 47. Mason, H.E., Du Frane, W.L., Walsh, S.D.C., Dai, Z., Charnvanichborikarn, S. and Carroll, S.A. 2013. Chemical and mechanical properties of wellbore cement altered by CO2-rich brine using a multianalytical approach. Environmental Science & Technology, 47, 1745-1752.
  • 48. McGuire, P.L., Chatham, J.R., Paskvan, F.K., Sommer, D.M. and Carini, F.H. 2005. Low salinity oil recovery: an exciting new EOR opportunity for Alaska’s north slope. In: SPE Western Regional Meeting, 30 March-1 April, Irvine, California. Available at: https://doi.org/10.2118/93903-MS.
  • 49. Melidis, P., Sanozidou, M., Mandusa, A. and Ouzounis, K. 2007. Corrosion control by using indirect methods. Desalination, 213, 152-158.
  • 50. Meng, M., Chen, M. and Sanders, K.T. 2016. Evaluating the feasibility of using produced water from oil and natural gas production to address water scarcity in California’s Central Valley. Sustainability, 8, 1318.
  • 51. Merdhah, A.B.B. and Yassin, A.A.M. 2007. Scale formation in oil reservoir during water injection at high-salinity formation water. Journal of Applied Sciences, 7, 3198-3207.
  • 52. Meyer, R.F. 1990. Heavy oil and natural bitumen. In: Magoon, L.B. (Ed.), The petroleum system - Status of research and methods. U.S.G.S. Bulletin, 1912, 63-68.
  • 53. Morrow, N.R., Tang, G., Valat, M. and Xie, X. 1998. Prospects of improved oil recovery related to wettability and brine composition. Journal of Petroleum Science and Engineering, 20, 267-276.
  • 54. Müller-Steinhagen, H.M. and Branch, C.A. 1998. Comparison of indices for the scaling and corrosion tendency of water. The Canadian Journal of Chemical Engineering, 66, 1005-1007.
  • 55. Myśliwiec, M. 2004. Traps for gas accumulations and the resulting zonation of the gas fields in the Miocene strata of the eastern part of the Carpathian Foredeep (SE Poland). Przegląd Geologiczny, 52, 657-664. [In Polish with English abstract]
  • 56. Nešić, S. 2007. Key issues related to modeling of internal corrosion of oil and gas pipelines - A review. Corrosion Science, 49, 4308-4338.
  • 57. Noga, B., Biernat, H., Martyka, P., Kulik, S., Zieliński, B., Marianowski, J. and Nalikowski, A. 2011. Analysis of the operating efficiency grow in the geothermal plant in Pyrzyce as a result of the injected thermal water ph modification. Technika Poszukiwań Geologicznych, Geotermia, Zrównoważony Rozwój, 1, 59-71. [In Polish with English abstract]
  • 58. Oddo, J.E. and Tomson, M.B. 1994. Why scale forms and how to predict it. SPE Production & Facilities, 9, 47-54.
  • 59. Olajire, A.A. 2015. A review of oilfield scale management technology for oil and gas production. Journal of Petroleum Science and Engineering, 135, 723-737.
  • 60. Państwowy Instytut Geologiczny, 2018. Centralna Baza Danych Geologicznych, Surowce - złoża kopalin. Available at: http://dm.pgi.gov.pl/.
  • 61. Parkhurst, D.L. and Apello, T. 2013. Description of input and examples for PHREEQC Version 3 - A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geological Survey, Techniques and Methods, book 6, chap. A43, 497 pp. Available only at: https://pubs.usgs.gov/tm/06/a43/.
  • 62. Piesik-Buś, W. 2011. Analysis of hydrodynamic conditions for the accumulation of hydrocarbons in the works of Rotliegend gas fields in the Sudetic monocline. NAFTA-GAZ, 12, 884-889. [In Polish with English abstract]
  • 63. Pitzer, K.S. 1991. Ion interaction approach: Theory and data correlation. In: Pitzer, K.S. (Ed.), Activity Coefficients in Electrolyte Solutions, 2nd Edition, 76-153. CRC Press; Boca Raton.
  • 64. Puckorius, P.R. and Brooke, J.M. 1991. A new practical index for calcium carbonate scale prediction in cooling tower systems. Corrosion, 47, 280-284.
  • 65. Railroad Commission of Texas. 2018. Available at: http://www.rrc.state.tx.us/about-us/resource-center/faqs/oil-gas-faqs/faq-injection-and-disposal-wells/.
  • 66. Ramstad, K., Tydal, T., Askvik, K.M. and Fotland, P. 2005. Predicting carbonate scale in oil producers from high-temperature reservoirs. SPE Journal, 10, 363-373.
  • 67. Robinson, D. 2013. Treatment of produced waters for injection and reinjection, Filtration + Separation. Oil and gas, 50, 36-43.
  • 68. Rychlicki, S., Stopa, J., Uliasz-Misiak, B. and Zawisza, L. 2011. Screening criteria for selecting oil reservoirs for CO2 enhanced oil recovery. Gospodarka Surowcami Mineralnymi Mining Resources management, 27 (3), 125-140. [In Polish with English abstract]
  • 69. Salehi, M.M., Omidvar, P. and Naeimi, F. 2017. Salinity of injection water and its impact on oil recovery absolute permeability, residual oil saturation, interfacial tension and capillary pressure. Egyptian Journal of Petroleum, 26, 301-312.
  • 70. Shutemov, D. 2013. Modeling and management of scale potential in an oil field production network, Norwegian University of Science and Technology. Available at: https://core.ac.uk/download/pdf/52100361.pdf
  • 71. Sorbie, K.S. and Mackay, E.J. 2000. Mixing of injected, connate and aquifer brines in waterflooding and its relevance to oilfield scaling. Journal of Petroleum Science and Engineering, 27, 85-106.
  • 72. SPE. Challenges in Reusing Produced Water. White paper. 2011. Available at: http://www.spe.org/industry/challenges-in-reusing-produced-water.php.
  • 73. Stiff Jr., H.A. and Davis, L.E. 1952. A method for predicting the tendency of oil field water to deposit calcium carbonate. Petroleum Transactions of AIME, 195, 213-216.
  • 74. Stober, I. and Bucher, K. 2012. Geothermie, 1-302. Springer; Heidelberg.
  • 75. Water Framework Directive. 2000. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Available at: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32000L0060.
  • 76. Tomaszewska B. 2008. The prognosis of scaling phenomena in geothermal systems using the geochemical modeling methods. Gospodarka Surowcami Mineralnymi - Mineral Resources Management, 24 (2), Spec. issue 3, 399-407. Available at: http://warsztatygornicze.pl/wp-content/uploads/2014/02/2008-41.pdf. [In Polish with English abstract]
  • 77. Uliasz-Misiak, B. and Chruszcz-Lipska, K. 2017. Hydrogeochemical aspects associated with the mixing of formation waters injected into the hydrocarbon reservoir. Gospodarka Surowcami Mineralnymi - Mineral Resources Management, 33 (2), 69-80. [In Polish with English abstract]
  • 78. USEPA, 2018. Available at: https://www.epa.gov/sdwa.
  • 79. Vetter, O.J., Kandarpa, V. and Harouaka, A. 1982. Prediction of scale problems due to injection of incompatible waters. Journal of Petroleum Technology, 34, 273-284.
  • 80. Visocky, A.P, Sherrill, K. and Cartwright, K. 1985. Geology, hydrology, and water quality of the Cambrian and Ordovician Systems in northern Illinois. Illinois State Geological Survey and Illinois State Water Survey Cooperative Report 10, 136, 2-83.
  • 81. Waligóra, J., Jakóbczyk-Karpierz, S. and Witkowski, A. 2016. Zastosowanie modelowania geochemicznego w badaniach nad przyczynami kolmatacji filtru otworu chłonnego uzdrowiska „Ustroń”. In: XX (Ed.), VII Konferencja Naukowa - Modelowanie Przepływu Wód Podziemnych, 9-12 października 2016 r., Zakopane, pp. 195-201. Wydawnictwa AGH; Kraków.
  • 82. Water Law. 2017. Journal of Laws of the Republic of Poland (Dziennik Ustaw), No. 1566. [In Polish]
  • 83. Wigand, M., Kaszuba, J.P., Carey, J.W. and Hollis, W.K. 2009. Geochemical effects of CO2 sequestration on fractured wellbore cement at the cement/caprock interface. Chemical Geology, 265, 122-133.
  • 84. Wilson, L. and Holland, M.T. 1984. Aquifer classification for the UIC program: prototype studies in New Mexico. Groundwater, 22, 706-716.
  • 85. Witherspoon, P.A., Mueller, T.D. and Donavan, R.W. 1962. Evaluation of underground gas-storage conditions in aquifers through investigations of groundwater hydrology. Journal of Petroleum Technology, 14, 555-561.
  • 86. Wright, C.C. and Chilingarian, G.V. 1989. Water quality for sub-surface injection. In: Robertson, J.O., Chilingarian, G.V. and Kumar, S. (Eds), Surface Operations in Petroleum Production, II, Volume 19B, 119-171. Elsevier; Amsterdam, Oxford, New York, Tokyo.
  • 87. Zubrzycki, A. 2004. Miocene formation waters in the area of Przemyśl gas field (SE part of the Carpathian Foredeep) - the preliminary interpretation of their origin and evolution. Wiertnictwo, Nafta, Gaz, 21, 493-503. [In Polish with English abstract]
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b542ddff-e9d5-4157-b13a-0d892e71bbef
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.