Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Contact stylus profilometry is the leading surface texture measuring method in many manufacturing industries. For years it has been unmatched in terms of accuracy and reliability. Advancements in technology have led to the improvements in the profilometer design. A stylus can either have a built in skid or be skidless. In this study, the influence of skid on the measurement accuracy and repeatability was evaluated. Four different contact stylus profilometers were used to measure three standard roughness artifacts each. Every set of measurements consisted of 50 repetitions of the same profile, with the same parameters. Out of these profiles, five roughness parameters were calculated and were subjected to a statistical analysis. Relative errors of these parameters were also considered and presented individually for each roughness standard. Researchers found differences in the measurement results dispersion of various roughness parameters between the three roughness standards. The presented results of the measurements clearly indicated that there is a dispersion of the obtained values for the older type of contact stylus profilometer (P1, skid). The skidless portable devices, P2 and P3, have better measurement resolution, which results in a noticeably lower dispersion of measured values. A tabletop, stationary device utilizes a skidless measuring probe. It has both the best resolution and the highest rigidity, which results in the lowest dispersion of measured values. The lowest relative error of the Ra parameter was determined for the P2 device (9.2%) and the highest was determined for the P3 device (72.6%).
Wydawca
Rocznik
Tom
Strony
58--70
Opis fizyczny
Bibliogr, 46 poz., fig., tab.
Twórcy
autor
- Poznan University of Technology, Institute of Mechanical Technology, Division of Metrology and Measurement Systems, ul. Piotrowo 3, 60-965 Poznan, Poland
autor
- Poznan University of Technology, Institute of Mechanical Technology, Division of Metrology and Measurement Systems, ul. Piotrowo 3, 60-965 Poznan, Poland
autor
- Poznan University of Technology, Institute of Mechanical Technology, Division of Metrology and Measurement Systems, ul. Piotrowo 3, 60-965 Poznan, Poland
autor
- Poznan University of Technology, Institute of Mechanical Technology, Division of Metrology and Measurement Systems, ul. Piotrowo 3, 60-965 Poznan, Poland
autor
- Poznan University of Technology, Institute of Mechanical Technology, Division of Metrology and Measurement Systems, ul. Piotrowo 3, 60-965 Poznan, Poland
autor
- Poznan University of Technology, Institute of Mechanical Technology, Division of Metrology and Measurement Systems, ul. Piotrowo 3, 60-965 Poznan, Poland
autor
- Huta Bankowa Inc., ul. Sobieskiego 24, 41-300 Dąbrowa Górnicza, Poland
Bibliografia
- 1. Gadelmawla E.S., Koura M.M., Maksoud T.M.A., Elewa I.M., Soliman H.H. Roughness parameters. Journal of Materials Processing Technology. 2002; 123(1): 133–145.
- 2. Wieczorowski M., Mrozek R., Andrałojć P. The use of surface asperities analysis to investigate wear of bodies in contact on example of brake elements. Metrology and Measurement Systems. 2010; 17(2): 271–278.
- 3. Tay F., Sumit Kanti S., Mannan M.A. Topography of the flank wear surface. Journal of Materials Processing Technology. 2002; 120(1–3): 243–248.
- 4. Varga G., Sovilj B., Jakubowicz M., Babič M. Experimental Examination of Surface Roughness in Low-Environmental-Load Machining of External Cylindrical Workpieces. Advances in Manufacturing. 6th International Scientific-Technical Conference Manufacturing, 19–22.05, Poznan, Poland 2019, 307–321.
- 5. Jeng Y.R., Lin Z.W., Shyu S.H. Changes of Surface Topography During Running-In Process. Journal of Tribology. 2004; 126(3): 620–625.
- 6. Twardowski P., Wojciechowski S., Wieczorowski M., Mathia T. Surface roughness analysis of hardened steel after high speed milling. Scanning. 2011; 33(5): 386–395.
- 7. Chen Y.K., Kukureka S.N., Hooke C.J., Rao M. Surface topography and wear mechanisms in polyamide 66 and its composites. Journal of Materials Science. 2000; 35(5): 1269–1281.
- 8. Pawlus P., Reizer R., Wieczorowski M. Reverse Problem in Surface Texture Analysis – One-Process Profile Modeling on the Basis of Measured Two-Process Profile after Machining or Wear. Materials. 2019; 12(24): 4169.
- 9. Sayles R.A., Thomas T.R. Mapping a small area of a surface. J. Phys. E. 1976; 9(10), 855–861.
- 10. Williamson J.B.P. The microtopography of surfaces. Proc. I. Mech. E. 1967; 182: 21–30.
- 11. Myshkin N.K., Grigoriev A., Chizhik S.A., Choi K.Y., Petrokovets M.I. Surface roughness and texture analysis in microscale. Wear. 2003; 254(10): 1001–1009.
- 12. Teague E.C., Scire F.E., Baker S.M., Jensen S.W. Three-dimensional stylus profilometry. Wear. 1982; 83(1): 1–12.
- 13. Mathia T.G., Pawlus P., Wieczorowski M. Recent trends in surface metrology. Wear. 2011; 271(3–4): 494–508.
- 14. De Groot P. The Meaning and Measure of Vertical Resolution in Optical Surface Topography Measurement. Applied Sciences. 2017; 7(1): 54.
- 15. Foreman M.R., Giusca C., Coupland J., Török P., Leach R. Determination of the transfer function for optical surface topography measuring instruments – a review. Measurement Science and Technology. 2013; 24(5): 052001.
- 16. Gomez C., Su R., De Groot P., Leach R. Noise Reduction in Coherence Scanning Interferometry for Surface Topography Measurement, Nanomanufacturing and Metrology. 2020; 3: 68–76.
- 17. Kucharski D., Zdunek H. Optical setup for a fast scatterometry surface texture measurements with nanometric precision. Bulletin of the Polish Academy of Sciences: Technical Sciences. 2020; 68(3): 485–490.
- 18. Grochalski K., Wieczorowski M., H’Roura J., Le Gioc G. The optical aspect of errors in measurements of surface asperities using the optical profilometry method. Frontiers in Mechanical Engineering. 2020; 6(12): 1–11.
- 19. Pawlus P., Reizer R., Wieczorowski M. Comparison of the results of surface texture measurement by stylus methods and optical methods. Metrology and Measurement Systems. 2018; 25(3): 589–602.
- 20. Grochalski K., Wieczorowski M., Pawlus P., H’Roura J. Thermal Sources of Errors in Surface Texture Imaging. Materials. 2020; 13(10): 2337–1 – 2337–18.
- 21. Whitehouse D.J. Theoretical analysis of stylus integration. Annals CIRP. 1974; 23(1): 181–182.
- 22. Pawlus P. Mechanical filtration of surface profiles. Measurement. 2004; 35(4): 325–341;
- 23. Abbott E.J., Bousky S., Williamson D.E. The profilometer. Mechanical Engineering. 1938; 60: 205–216.
- 24. Bellantonio M. On the risks associated with wear quantification using profilometers equipped with skid tracers. Friction. 2016; (1): 84–88.
- 25. Mummery L. Surface Texture Analysis The Handbook, B004301P201992; 1992.
- 26. Way S. Description and observation of metal surfaces, Proc. Conf. Frict. Surf. Finish, 2e, MIT, Cambridge, England 1969: 44–75.
- 27. Ishigaki H., Kawaguchi I. Effect of a skid on the accuracy of measuring surface roughness. Wear. 1981; 68(2): 203–211.
- 28. Wieczorowski M. Spiral sampling as a fast way of data acquisition in surface topography. Int. J. Mach. T. Manuf. 2001; 41(13–14): 2017–2022.
- 29. Brown C.A., Savary G. Describing ground surface texture using contact profilometry and fractal analysis. Wear. 1991; 141(2): 221–226.
- 30. Forsyth I., Scott D. Characterization of micromachined mirror surfaces from high speed diamond fly cutting. Wear. 1982; 83(2): 251–263.
- 31. Davis E.J., Stout K.J. Stylus measurement techniques: A contribution to the problem of parameter variation. Wear. 1982; 83(1): 49–60;
- 32. Farago F.T. Handbook of dimensional measurement, Industrial Press, New York; 1982.
- 33. Hunter A.G.M., Smith E.A. Measurement of surface roughness. Wear. 1980; 59(2): 383–386.
- 34. Volk R., Rauheitsmessung: Theorie und Praxis, Beuth; 2005.
- 35. Fang H, Xu B, Yin D, Zhao S. A. Method to Control Dynamic Errors of the Stylus-Based Probing System for the Surface Form Measurement of Microstructures. Journal of Nanomaterials. 2016; 2016: 1–8.
- 36. Thomsen-Schmidt P. Development of a new stylus contacting system for roughness measurement. Proc. XI Coll. Surf., Chemnitz, Germany 2004, 79–85.
- 37. Pawlus P., Smieszek M. The influence of stylus flight on change of surface topography parameters. Precision Engineering. 2005; 29(3): 272–280.
- 38. McCool J.I. Assessing the effect of stylus tip radius and flight on surface topography measurements. Trans. ASME: J. Trib. 1984; 106(2): 202–210.
- 39. Mansur D.J., Voorhes D.W., Wyntjes G.J. Laser surface profilometer with subangstrom resolution. Proc. SPIE. 1992; 1673: 403–413.
- 40. Fainman Y., Lenz E., Shamir J. Optical profilometer: a new method for high sensitivity and wide dynamic range. Appl. Opt. 1982; 21(17): 3200–3208.
- 41. Huang C.C. Optical heterodyne profilometer. Proc. SPIE. 1983; 429: 65–74.
- 42. Liu Q., Li L., Zhang H., Huang W., Yue X. Simultaneous dual-wavelength phase-shifting interferometry for surface topography measurement. Optics and Lasers in Engineering. 2020; 124: 105813.
- 43. Miller T., Adamczak S., Świderski J., Wieczorowski M., Łętocha A., Gapiński B. Influence of temperature gradient on surface texture measurements with the use of profilometry. Bulletin of the Polish Academy of Sciences. Technical Sciences. 2017; 65(1): 53–61.
- 44. Zelinka J., Čepová L. Gapiński B, Čep R., Mizera O., Hrubý R. The Effect of a Stylus Tip on Roundness Deviation with Different Roughness. Advances in Manufacturing. 6th International Scientific-Technical Conference Manufacturing, 19–22.05, Poznan, Poland 2019, 147–157.
- 45. Pawlus P., Reizer R., Wieczorowski M., Królczyk G. Material ratio curve as information on the state of surface topography – A review. Precision Engineering. 2020; 65: 240–258.
- 46. ISO 5436–1:2000 Geometrical Product Specifications (GPS) – Surface texture: Profile method; Measurement standards – Part 1: Material measures.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b53efbaf-a828-4ca8-8344-b06d68259de8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.