PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Prediction of the chromium (III) separation from acidic salt solutions on nanofiltration membranes using donnan and steric partitioning pore (DSP) model

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents experimental and modelling analysis of the application of nanofiltration for separation of chromium (III) from acidic salt solution. In the studies commercial nanofiltration HL membrane has been used. The experimental results have been interpreted by, based on the extended Nernst-Planck equation, Donnan and Steric Partitioning Pore (DSP) model. The obtained results showed satisfactory agreement between experimental and modelling data for the pressure range 10-24 bar and different concentrations of chloride and sulfate ions. It means that the DSP model may be helpful for the monitoring of nanofiltration applied to treatment of chromium wastewater.
PL
W pracy przedstawiono doświadczalną i modelową analizę zastosowania nanofiltracji do separacji chromu (III) z kwaśnych roztworów soli. W badaniach użyto komercyjną nanofiltracyjną membranę typu HL. Wyniki badań doświadczalnych zinterpretowano za pomocą modelu Donnana i Przestrzennego Rozkładu Porów (Donnan and Steric Partitioning Pore Model – DSP Model), który oparty jest na rozszerzonym równaniu Nernsta-Plancka. Uzyskane wyniki wykazały zadawalającą zgodność pomiędzy danymi doświadczalnymi i modelowymi dla ciśnienia w zakresie 10-24 bar oraz różnych stężeń jonów chlorkowych i siarczanowych. Oznacza to, że model DSP może być pomocny podczas monitorowania możliwości zastosowania nanofiltracji do oczyszczania ścieków chromowych.
Rocznik
Strony
135--140
Opis fizyczny
Bibliogr. 25 poz.
Twórcy
  • Institute for Sustainable Technologies - National Research Institute in Radom, Kazimierza Pułaskiego 6/10, 26-600 Radom, Poland
autor
  • Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
autor
  • Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
Bibliografia
  • [1] Su B., WuT., Li Z., Cong X., Gao X. Gao, C.; Pilot study of seawater nanofiltration softening technology based on integrated membrane system. Desalination, Vol.368, 2015; p.193-201.
  • [2] Orecki A., Tomaszewska M., Karakulski K., Morawski A.W.; Surface water treatment by the nanofiltration method. Desalination, Vol.162, 2004; p.47-54.
  • [3] Liu C., Shi L., Wang R.; Crosslinked layer-by-layer polyelectrolyte nanofiltration hollow fiber membrane for low-pressure water softening with the presence of SO4. 2− in feed water. Journal of Membrane Science, Vol.486, 2015;p.169-176.
  • [4] Dudziak M., Bodzek M.; Removal of xenoestrogens from water during reverse osmosis and nanofiltration – effect of selected phenomena on separation of organic micropollutants. Architecture Civil Engineering Environment, No.3, 2008; p.95-102.
  • [5] Gomes S., Cavaco S.A., Quina M.J., Gando-Ferreira L.M.; Nanofiltration process for separating Cr(III) from acid solutions: Experimental and modelling analysis. Desalination, Vol.254, 2010; p.80-89.
  • [6] Religa P., Kowalik-Klimczak A., Gierycz P.; Study on the behavior of nanofiltration membranes using for chromium (III) recovery from salt mixture solution. Desalination, Vol.315, 2013; p.115-123.
  • [7] Wang Z., Liu G., Fan Z., Yang X., Wang J., Wang S.; Experimental study on treatment of electroplating wastewater by nanofiltration. Journal of Membrane Science, Vol.305, 2007; p.185-195.
  • [8] Ortega L.M., Lebrun R., Noël I.M., Hausler R.; Application of nanofiltration in the recovery of chromium(III) from tannery effluents. Separation and Purification Technology, Vol.44, 2005; p.45-52.
  • [9] Kowalik-Klimczak A., Zalewski M., Gierycz P.; Experimental and modelling analysis of the separation of ionic salts solution in nanofiltration process. Challenges of Modern Technology, Vol.6, No.2, 2015; p.24-29.
  • [10] Tanninen J., Mänttäri M., Nyström M.; Effect of salt mixture concentration on fractionation with NF membranes. Journal of Membrane Science, Vol.283, 2006; p.57-64.
  • [11] Sharrna R.R., Chellam S.; Solute rejection by porous thin film composite nanofiltration membranes at high feed water recoveries. Journal of Colloid and Interface Science, Vol.328, 2008; p.353-366.
  • [12] PreuB V., Riedel C., Koch T., Thurmer K., Domańska M.; Nanofiltration as an effective tool of reducing sulphate concentration in mine water. Architecture Civil Engineering Environment, No.3, 2012; p.127-132.
  • [13] Mukherjee P., Mukherjee P.; Some observations about electrolyte permeation mechanism through reverse osmosis and nanofiltration membranes. Journal of Membrane Science, Vol.278, 2006; p.301-307.
  • [14] Deon S., Escoda A., Fievet P.; A transport model considering charge adsorption inside pores to describe salts rejection by nanofiltration membranes. Chemical Engineering Science, Vol.66, 2011;
  • p.2823-2832.
  • [15] Deon S., Dutournie P., Limousy L., Bourseau P.; Transport of salt mixture through nanofiltration
  • membranes: Numerical identification of electric and dielectric contributions. Separation and Purification Technology, Vol.69, 2009; p.225-233.
  • [16] Chaudhari L.B., Murthy Z.V.P.; Separation of Cd and Ni from multicomponent aqueous solutions by nanofiltration and characterization of membrane using IT model. Journal of Hazardous Materials, Vol.180, 2010; p.309-315.
  • [17] Kelewou H., Lhassani A., Merzouki M., Drogui P., Sellamuthu B.; Salts retention by nanofiltration membranes: Physicochemical and hydrodynamic approaches and modeling. Desalination, Vol.277, 2011; p.106-112.
  • [18] Zhua H., Szymczyk A., Balannec B.; On the salt rejection properties of nanofiltration polyamide membranes formed by interfacial polymerization. Journal of Membrane Science, Vol.379, 2011; p.215-223.
  • [19] Mohammad A.W., Takriff M.S.; Predicting flux and rejection of multicomponents salts mixture in nanofiltration membranes. Desalination, Vol.157, 2003; p.105-111.
  • [20] Hussain A. A., Abashar M. E. E., Al-Mutaz I. S.; Prediction of charge density for Desal-HL nanofiltration membrane from simulation and experiment using different ion radii. Separation Science and Technology, Vol.42, 2007; p.43-57.
  • [21] Jarzyńska M., Pietruszka M.; The application of the Kedem-Katchalsky equations to membrane transport of ethylalcohol and glucose. Desalination, Vol.280, 2011; p.14-19.
  • [22] Mandale S., Jones M.; Membrane transport theory and the interactions between electrolytes and nonelectrolytes. Desalination, Vol.252, 2010; p.17-26.
  • [23] Koter S.; Determination of the parameters of the Spiegler-Kedem-Katchalsky model for nanofiltration of single electrolyte solutions. Desalination, Vol.198, 2006; p.335-345.
  • [24] Hidalgo A.M., Leon G., Gomez M., Murcia M.D., Gomez E. Gomez J.L.; Application of the SpieglerKedem-Kachalsky model to the removal of 4-chlorophenol by different nanofiltration membranes. Desalination, Vol.315, 2013; p.70-75.
  • [25] Nędzarek A., Drost A., Harasimiuk F.B., Tórz A.; The influence of pH and BSA on the retention of selected heavy metals in the nanofiltration process using ceramic membrane. Desalination, Vol.369, 2015; p.62-67.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b538b82d-8166-41e1-ae7e-3c3fb94d86e7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.