PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On the stress free deformation of linear FGM interface under constant temperature

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper demonstrates the stress free thermo-elastic problem of the FGM thick plate. Existence of such a purely thermal deformation is proved in two ways. First proof is based on application of the Iljushin thermo-elastic potential to displacement type system of equations. This reduces 3D problem to the plane stress state problem. Next it is shown that the unique solution fulfils conditions of simultaneous constant temperature and linear gradation of thermal expansion coefficient. Second proof is based directly on stress type system of equations which straightforwardly reduces to compatibility equations for purely thermal deformation. This occurs if only stress field is homogeneous in domain and at boundary. Finally an example of application to an engineering problem is presented.
Rocznik
Strony
135--139
Opis fizyczny
Bibliogr. 20 poz., rys., wykr.
Twórcy
  • Institute of Applied Mechanics, Department of Mechanical Engineering, Cracow University of Technology, 31-864 Kraków, al. Jana Pawła II 37, Poland
  • Institute of Applied Mechanics, Department of Mechanical Engineering, Cracow University of Technology, 31-864 Kraków, al. Jana Pawła II 37, Poland
Bibliografia
  • 1. Akai T., Ootao Y., Tanigawa Y. (2005), Piezothermoelastic analysis of functionally graded piezoelectric cylindrical panel due to nonuniform heat supply in the circumefernetial direction, Proc. Thermal Stresses’05, 709-712.
  • 2. Bagri A., Eslami M. R., Samsam-Shariat B. A. (2005), Coupled thermoelasticity of functionally graded layer, Proc. Thermal Stresses’05, 721-724.
  • 3. Chen W. F., Tong L. (2004), Sensitivity analysis of heat conduction for functionally graded materials, Mater. Design, 25, 633-672.
  • 4. Cho J. R., Shin S. W. (2004), Material composition optimization for heat-resisting FGMs by artificial neural network, Composites, A35, 585-595.
  • 5. Fung Y. C. (1965), Foundations of solid mechanics, Prentice-Hall, New Jersey.
  • 6. Ganczarski A., Barwacz L. (2004), Notes on damage effect tensors of two-scalar variables, Int. J. Damage Mech., 13, 3, 287-295.
  • 7. Ignaczak J. (1959), Direct determination of stresses from the stress equations of motion in elasticity, Arch. Mech. Stos., 11(5), 671−678.
  • 8. Iljushin A. A., Lomakin W. A., Shmakov A. P. (1979), Mechanics of Continuous Media, Moscow.
  • 9. Kim J. H., Paulino G. H. (2002), Isoparametric graded finite elements for non-homogeneous isotropic and orthotropic materials, ASME J. Appl. Mech., 69, 502−514.
  • 10. Lee W. Y., Stinton D. P., Berndt C. C, Erdogan F., Lee Y.-D., Mutasin Z. (1996), Concept of functionally graded materials for advanced thermal barrier coating applications, J. Am. Ceram. Soc. 79, 3003-3012.
  • 11. Muki R. (1957), Thermal stresses in a semi-infinite solid and a thick plate under steady distribution of temperature, Proc. Fac. Eng. Keio. Univ., 9, 42.
  • 12. Noda N. (1999), Thermal stresses in functionally graded materials, J. Thermal Stresses, Vol. 22(4/5), 477−512.
  • 13. Nowacki W. (1970), Theory of elasticity, PWN, Warsaw.
  • 14. Odqvist F. K. G. (1966), Mathematical theory of creep and creep rupture, Oxford, Clarendon Press.
  • 15. Potarescu F., Sugano Y. (1993), An improved solution to thermoelastic material design in fuctionally graded materials: Scheme to reduce thermal stresses, Comput. Mech. Appl. Mech.Eng., 109, 377-389.
  • 16. Schulz U., Bach F. W., Tegeder G. (2003), Graded coating for thermal, wear and corrosion barriers, Mater. Sci. Eng., A 362(1-2), 61−80.
  • 17. Sneddon I. N., Lockett F. J. (1960), On the steady-state thermoelastic problem for the half-space and the thick plate, Quart. Appl. Math., Vol. 18(2), 145−153.
  • 18. Sternberg E., McDowell E. L. (1957), On the steady-state thermoelastic problem for the half-space, Quart. Appl. Math., 14, 381.
  • 19. Wang B.-L., Han J. C., Du S. Y. (2000), Crack problems for functionally graded materials under transient thermal loading, J. Thermal Stresses, 23, 143-168.
  • 20. Yamanouchi M., Hirai T., Shiota I. (1990), Overall view of the P/M fabrication of fuctionally gradient materials, Proc. First Int. Symp. Functionally Gradient Materials, eds Yamanouchi et al., Sendai, Japan, 59-64.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b5362a89-ecf2-444f-ad61-159918033832
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.