PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Oczyszczanie gazów odlotowych z tlenku azotu za pomocą plazmy nietermicznej z reakcjami heterogenicznymi

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
Twórcy
autor
  • Instytut Maszyn Przepływowych PAN w Gdańsku
Bibliografia
  • [1] E. M. Van Veldhuizen, Electrical Discharges for Environmental Purposes, Nova Science Publishers, New York, 2000
  • [2] H.H. Kim, Nonthermal plasma processing for air-pollution control: A historical review, current issues, and future prospects, Plasma Processes and Polymers, 1, 2, 91-110, 2004
  • [3] C.F. Gallo, Corona - A Brief Status Report, IEEE Transactions on Industry Applications, vol. Ia-13, Nr. 6, 1977, 550-557
  • [4] A. Jaworek, Podstawowe problemy optymalizacji wielopunktowego wyładowania koronowego, Zeszyty Naukowe IMP PAN, 434/1392/1994, 1994
  • [5] J.S. Chang, Corona discharge processes, IEEE Trans. on Plasma Sciences, 19, 6, 1152-1165, 1991
  • [6] A. Loeb, Corona discharge, Wyd.: Moskwa, 1965, str. 86
  • [7] J.S. Townsend, The potentials required to maintain currents between coaxial cylinders., Phil. Mag. 28, 83-90, 1914 za Jaworek A., Podstawowe problemy optymalizacji wielopunktowego wyladowania koronowego, Zeszyty Naukowe IMP PAN, 434/1392/94
  • [8] P. Giubbilini, The current-voltage characteristics of point to ring corona, J. Appl. Phys. 64, 7, 3730-3732, 1988
  • [9] Y.L.M. Creyghton, Pulsed positive corona discharges. Fundamental study and application to flue gas treatment, Thesis, Eindhoven University of Technology, Nederland, 1994, str. 38
  • [10] E.A. Rubtsova, E.N. Eremin, Heterogeneous catalytic effects during ammonia reactions in electrical discharges. I. Glow discharge, Zh. Fiz. Khim., 42, 1022-1026, 1968
  • [11] E.A. Rubtsova, E.N. Eremin, Heterogeneous catalytic effects during ammonia reactions in electrical discharges. II. Barrier discharge, Zh. Fiz. Khim., 42, 2084-2086, 1968
  • [12] E.N. Eremin, A.N. Maltsev, V.M. Bielova, Effect of metallic catalysts on steady-state concentrations of ammonia in a glow discharge, Zh. Fiz. Khim., 45, 370-374, 1971
  • [13] A.N. Maltsev, E.N. Eremin, V.M. Bielova, Heterogeneous-catalytic oxidation of nitrogen in a glow discharge, Zh. Fiz. Khim., 45, 1830-1832, 1971
  • [14] E.N. Eremin, A.M. Maltsev, L.A. Rusakova, Heterogeneous-catalytic effects and role of positive ions during the synthesis of nitric oxide in a glow discharge. I. Catalytic action of metals at the cathode, 48, 2079-2081, 1974
  • [15] V.G. Samoilovic, V.I. Gibalov, Kinetics of the sybthesis of ozone and nitrogen oxides in a silent discharge, Zh. Fiz. Khim., 60, 1841-1853, 1986
  • [16] D. Bersis, D. Katakis, Surface effects in the production of ozone in the silent discharge, J. Chem. Phys. , 40, 1977-2002, 1964
  • [17] K. Schmidt-Szałowski, S. Jodzis, K. Krawczyk, M. Młotek, A. Górska, Non-equilibrium plasma processes in heterogeneous systems at atmospheric pressure, Curr. Top. Catal., 5, 39-68, 2006
  • [18] T. Yamamoto, K. Mizuno, I. Tamori, A. Ogata, M. Nifuku, M. Michalska, G. Prieto, Catalysis assisted plasma technology for carbon tetrachloride destruction, IEEE Trans. Ind. Appl., 32, 100–105, 1996
  • [19] A. Ogata, K. Yamanouchi, K. Mizuno, S. Kushiyama, T. Yamamoto, Oxidation of dilute benzene in an alumina hybrid plasma reactor at atmospheric pressure, Plasma Chem. Plasma Proc., 19, 383–394, 1999
  • [20] Y.H. Song, S.J. Kim, K.I. Choi, T. Yamamoto, Effects of adsorption and temperature on a nonthermal plasma process for removing VOCs, J. Electrostatics, 55, 189–201, 2002
  • [21] M. Heintze, B. Pietruszka, Plasma catalytic conversion of methane into syngas: the combined effect of discharge activation and catalysis, Catal. Today, 89, 21-25, 2004
  • [22] A. Mizuno, Y. Kisanuki, M. Noguchi, S. Katsura, S.H. Lee, Y.K. Hong, S.Y. Shin, J.H. Kang, Indoor Air Cleanig Using a Pulsed Discharge Plasma, IEEE Trans. Ind. Appl., 35, 1284-1288, 1999
  • [23] S. Futamura, A. Zhang, H. Einaga, H. Kabashima, Involvement of catalyst materials in nonthermal plasma chemical processing of hazardous air pollutants, Catal. Today, 72, 259–265, 2002
  • [24] B. Pietruszka, K. Anklam, M. Heintze, Plasma-assisted partial oxidation of methane to synthesis gas in a dielectric barrier discharge, Appl. Catal. A: General, 261, 19–24, 2004
  • [25] R.B. Biniwale, A. Mizuno, M. Ichikawa, Hydrogen production by reforming of iso-octane using spray-pulsed injection and effect of non-thermal plasma, Appl. Catal. A: General, 276, 169–177, 2004
  • [26] J. Van Durme, J. Dewulf, Ch. Leys, H. Van Langenhove, Combining Non-thermal Plasma with Heterogeneous Catalysis in Waste Gas Treatment: A Review, Appl. Catal. B: Environ., 78, 324-333, 2008
  • [27] K. Krawczyk, M. Młotek, K. Schmidt-Szałowski, Oxidation and decomposition of N2O by gliding discharge combined with a bed of catalyst, High Temp. Mater. Process, 5, 349-353, 2001
  • [28] J. Sentek, K. Krawczyk, K. Radomyska, K. Schmidt-Szalowski, Conversion of methane in barrier discharges with the discharge gap packed, Przem. Chem., 83, 340-344, 2004
  • [29] A. Górska, J. Sentek, K. Krawczyk, K. Schmidt-Szalowski, Methane conversion in dielectric-barrier discharge in the presence of quartz packing, Pol. J. Chem., 78, 2225-2229, 2004
  • [30] M. Młotek, K. Krawczyk, K. Schmidt-Szałowski, Plasma conversion of methane in spouted bed, Pol. J. Chem., 79, 945-949, 2005
  • [31] K. Schmidt-Szałowski, A. Górska, M. Młotek, Plasma-catalytic conversion of methane by DBD and gliding discharges, J. Adv. Oxid. Technol., 9, 215-219, 2006
  • [32] K. Schmidt-Szałowski, A. Górska, M. Młotek, The combined plasma-catalytic processes for converting methane, Przem. Chem., 85, 754-757, 2006
  • [33] K. Schmidt-Szałowski, K. Krawczyk, M. Młotek, Plasma-catalytic processes in gliding discharges, J. Adv. Oxid. Technol., 10, 330-336, 2007
  • [34] K. Schmidt-Szałowski, K. Krawczyk, M. Młotek, Catalytic effects of metals on the conversion of methane in gliding discharges, Plasma Process. Polym., 4, 728-736, 2007
  • [35] K. Schmidt-Szałowski, K. Krawczyk, J. Sentek, M. Młotek, Plasma-catalytic system for methane conversion in gliding discharges, Pol. J. Chem., 81, 2215-2220, 2007
  • [36] H. Suhr, G. Weddigen, Reduction of Nitric Oxide in Flue Gases by Point to Plane Corona Discharge with Catalytical Coatings on the Plane Electrode, Combust. Sci. and Technol., 72, 101-115, 1990
  • [37] K. Shimizu, T. Oda, De-NOx Process in Flue Gas Combined with Nonthermal Plasma and Catalyst, IEEE Trans. Ind. Appl., 35, 6, 1311-1317, 1999
  • [38] K. Shimizu, T. Hirano, T. Oda, Effect of Water Vapor and Hydrocarbons in Removing NOx by Using Nonthermal Plasma and Catalyst, IEEE Trans. Ind. Appl., 37, 2, 464-471, 2001
  • [39] H.H. Kim, K. Tsunoda, S. Katsura, A. Mizuno, A Novel Plasma Reactor for NOx Control Using Photocatalyst and Hydrogen Peroxide Injection, IEEE Trans. Ind. Appl., 36, 6, 1306-1310, 1999
  • [40] H.H. Kim, K. Takashima, S. Katsura, A. Mizuno, Low-temperature NOx Reduction Process Using Combined Systems of Pulsed Corona Discharge and Catalyst, J. Phys. D: Appl. Phys., 34, 604-613, 2001
  • [41] S. Daito, F. Tochikubo, T. Watanabe, NOx Removal Process in Pulsed Corona Discharge Combined with TiO2 Photocatalyst, Jpn. J. Appl. Phys., 40, 2001, 2475-2479
  • [42] B.S. Rajanikanth, S. Rout, Studies on Nitric Removal in Simulated Gas Compositions under Plasma-Dielectric/Catalytic Discharges, Fuel Processing Technology, 74, 177-195, 2001
  • [43] T. Kawasaki, H. Hirakawa, S. Kanazawa, T. Ohkubo, Y. Nomoto, Evaluation of NOx Treatment in a Packed-bed Plasma Reaktor, Proceedings the Second Polish-Japanese Hakone Group Symposium on Non-Thermal Plasma Processing of Water and Air, Nagoya, Japan, 2001, pp. 6-10
  • [44] M.J. Kirkpatrick, W.C. Finney, B.R. Locke, Plasma–catalyst Interactions in the Treatment of Volatile Organic Compounds and NOx with Pulsed Corona Discharge and Reticulated Vitreous Carbon Pt/Rh-coated Electrodes, Catalysis Today, 89, 2004, 117-126
  • [45] T. Oda, T. Kato, T. Takahashi, K. Shimizu, Nitric Oxide Decomposition in Air by Using Non-thermal Plasma Processing – with Additives and Catalyst, J. Electrostatic, 42, 1997, 1551-157
  • [46] T. Oda, T. Kato, T. Takahashi, K. Shimizu, Nitric Oxide Decomposition in Air by Using Nonthermal Plasma Processing with Additives and Catalyst, IEEE Trans. Ind. Appl., 34, 2 1998, 268-272
  • [47] Y.S. Mok, V, Ravi, H.C. Kang, B.S. Rajanikanth, Abatement of Nitrogen Oxides in a Catalytic Reactor Enhanced by Nonthermal Plasma Discharge, IEEE Trans. Plasma Sci., 31, 1, 157-165, 2003
  • [48] Y.S. Mok, D.J. Koh, K.T. Kim, I.S. Nam, Nonthermal Plasma-Enhanced Catalytic Removal of Nitrogen Oxides over V2O5/TiO2 and Cr2O3/TiO2, Ind. Eng. Chem. Res., 42, 2960-2967, 2003
  • [49] F. Luck, J. Roiron, Selective Catalytic Reduction of NOx Emitted by Nitric Acid Plants, Catalysis Today, 4, 205-218, 1989
  • [50] Y.S. Mok. E.Y. Yoon, M. Dors, J. Mizeraczyk, Optimum NO2/NOx Ratio for Efficient Selective Catalytic Reduction, Acta Phys. Slovaca, 55, 467-478, 2005
  • [51] Y.S. Mok. H.J. Lee, M. Dors, J. Mizeraczyk, Improvement in Selective Catalytic Reduction of Nitrogen Oxides by Using Dielectric Barrier Discharge, Chem. Eng. J., 110, 79-85, 2005
  • [52] T. Hammer, S. Broer, Plasma Enhanced Selective Catalytic Reduction of NOx for Diesel Cars, Society of Automotive Engineers Technical Paper Series, No. 982428, 1998
  • [53] T. Hammer, T. Kishimoto, H. Miessner, R. Rudolph, Plasma Enhanced Selective Catalytic Reduction: Kinetics of NOx Removal and Byproducts Formation, Society of Automotive Engineers Technical Paper Series, No. 1999-01-3632, 1999
  • [54] J.H. Kwak, J. Szanyi, C.H.F. Peden, Non-thermal Plasma-assisted NOx Reduction over Alkali and Alkaline earth Ion Exchanged Y, FAU Zeolites, Catalysis Today, 89, 2004, 135-141
  • [55] A. Khacef, J.M. Cormier, J.M. Pouvesle, O. Gorce, H. Jurado, C. Thomas, G. Djéga-Mariadassou, S. Calvo, Y. Lendresse, Plasma-catalyst System for NOx Remediation in Simulated Lean Exhaust, Proc. Int. Symp. on High Pressure Low Temperature Plasma Chemistry HAKONE VIII, Puhajarve, Estonia, 2002, pp. 296-300
  • [56] M.A. Gomez-Garcia, V. Pitchon, A. Kiennemann, Pollution by nitrogen oxides: an approach to NOx abatement by using sorbing catalytic materials, Environment International, 31, 445– 467, 2005
  • [57] M. Richter, R. Eckelt, B. Parlitz, R. Fricke, Low-temperature Conversion of NOx to N2 by Zeolite-fixed Ammonium Ions, Appl. Catal. B: Environmental, 15, 129-146, 1998
  • [58] J. Mizeraczyk, M. Dors, G.V. Nichipor, Kinetics of NOx Removal from Flue Gas Simulator Subjected to Corona Discharge, J. Adv. Oxid. Technol., 4, 380–385, 1999
  • [59] J.Y. Park, I. Tomicic, G.F. Round, J.S. Chang, Simultaneous Removal of NOx and SO2 from NO-SO2-CO2-N2-O2 Gas Mixtures by Corona Radical Shower Systems, J. Phys. D: Appl. Phys., 32, 1999, 1006-1011
  • [60] H. Mätzing, Chemical kinetics of flue gas cleaning by irradiation with electrons, Advances in Chemical Physics, 58, 315-402, 1991
  • [61] I. Nakamura, N. Negishi, S. Kutsuna, T. Ihara, S. Sugihara, K. Takeuchi, Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal, J. Molec. Catal. A, 161, 1-2, 205-212, 2000
  • [62] K. Hashimoto, K. Wasada, N. Toukai, H. Kominami, Y. Kera, Photocatalytic oxidation of nitrogen monoxide over titanium(IV) oxide nanocrystals large size areas, J. Photochem. Photobio. A, 136, 103-109, 2000
  • [63] W.S. Kijlstra, D.S. Brands, H.I. Smit, E.K. Poels, A. Bliek, Mechanism of the Selective Catalytic Reduction of NO with NH3 over MnOx/Al2O3, J. Catal., 171, 1, 219-230, 1997
  • [64] A. Mizuno, K. Shimizu, T. Matsuoka, S. Furuta, Reactive absorption of NOx using wet discharge plasma reactor, IEEE Trans. Ind. Appl., 31, 1463–1467, 1995
  • [65] G. Dinelli, L. Civitano, M. Rea, Industrial experiments on pulse corona simultaneous removal of NOx and SO2 from flue gas, IEEE Trans. Ind. Appl., 26, 535–541, 1990
  • [66] K. Onda, K. Kato, Y. Kasuga, SO2 and NOx Removal from Combustion Flue Gas by Corona Discharge in Laboratory-Scale Experiment, JSME Int. J. Ser. B 39, 202–210, 1996
  • [67] J.Y. Park, I. Tomicic, G.F. Round, J.S. Chang, Simultaneous removal of NOx and SO2 from NO–SO2–CO2–N2–O2 gas mixtures by corona radical shower systems, J. Phys. D: Appl. Phys., 32, 1006–1011, 1999
  • [68] Y.S. Mok, M. Dors, J. Mizeraczyk, Effect of Reaction Temperature on NOx Removal and Formation of Ammonium Nitrate in Nonthermal Plasma Process Combined with Selective Catalytic Reduction, IEEE Trans. Plasma Sci., 32, 2155-2155, 2004
  • [69] B.J. Adelman,. G.D. Lei, W.M.H. Sachtler, Coadsorption of nitrogen monoxide and nitrogen dioxide in zeolite de-NOx, Catal. Letters, 28, 119– 30, 1994
  • [70] J. G. M.Brandin, L. A. H.Andersson, C. U. I. Odenbrandt, Catal. Today, 4, 187-195, 1989
  • [71] M. Maache, A. Janin, J.C. Lavalley, E. Benazzi, FT infrared study of Brønsted acidity of H-mordenites: Heterogeneity and effect of dealumination, Zeolites, 15, 507-516, 1995
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b534e9f3-7f56-423e-acb9-072254d0a62a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.