PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Technical B-H Saturation Magnetization Curve Models for SPICE, FEM and MoM Simulations

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Recent development of SPICE, FEM and MoM software often requires the fast and reliable description of BH saturation magnetization curve. In spite of the fact that physical models of BH saturation curve are very sophisticated, for technical purposes, such curve may be modelled by simplified equations. Paper presents the quantitative assessment of the quality of four technical models of BH saturation magnetization curve performed for four modern magnetic materials: constructional corrosion resistant steel, Mn-Zn ferrite, amorphous alloy with perpendicular anisotropy as well as Finemet-type nanocrystalline magnetic material. Presented results confirm reliability of the model as well as indicate that high-speed calculation may be done using arctangent function.
Twórcy
autor
  • Industrial Research Institute for Automation and Measurements, Al. Jerozolimskie 202, 02-486 Warsaw, Poland
Bibliografia
  • [1] L. Rayleigh, “On the behaviour of iron and steel under the operation of feeble magnetic forces” Philosophical Magazine, vol. 23, no. 142, 1887, 225–245. DOI: 10.1080/14786448708628000.
  • [2] D. C. Jiles, D. Atherton, “Theory of ferromagnetic hysteresis”, J. Magn. Magn. Mater, vol. 61, 1986, 48. DOI: 10.1016/0304-8853(86)90066-1.
  • [3] A. Globus, „Some physical consideration about the domain wall size. Theory of magnetization mechanism”, J. de Physique C1, 1977, C1-1. DOI: 10.1051/jphyscol:1977101.
  • [4] Vadja F., Della Torre E., “Measurement of output dependent Preisach functions”, IEEE Trans. Magn., vol. 27, 1991, 4757. DOI: 10.1109/20.278938.
  • [5] Augustyniak B., Degauque J., “New approach to hysteresis process investigation using mechanical and magnetic Barkhausen effects”, J. Magn. Magn. Mater., vol. 140–144, part 3, Feb. 1995, 187–189. DOI: 10.1016/0304-8853(94)01603-8
  • [6] Kucuk I., “Prediction of hysteresis loop in magnetic cores using neural network and genetic algorithm”, J. Magn. Magn. Mater., vol. 305, 2006, 423. DOI: 10.1016/j.jmmm.2006.01.137.
  • [7] Wilson P. R., Ross J. N., Brown A. D., “Optimizing the Jiles-Atherton model of hysteresis by a genetic algorithm”, IEEE Trans. Magn., vol. 37, 2001, 989. DOI:10.1109/20.917182.
  • [8] A. Maxim, D. Andreu, J. Boucher, “A new analog Behavioral SPICE macromodel of magnetic components”. In: Proceedings of the IEEE International Symposium on Industrial Electronics, ISIE ’97, 1997, 183. DOI: 10.1109/ISIE.1997.648925
  • [9] F. J. Perez-Cebolla, A. Martinez-Iturbe, B. Martindel-Brio, E. Laloya, S. Mendez, C. E. Montano, “3D FEM characterization of a switched reluctance motor from direct experimental determination of the material magnetization curve”. In: IEEE International Conference on Industrial Technology (ICIT), 2012, 19–21 March 2012, 971–976. DOI: 10.1109/ICIT.2012.6210065
  • [10] Y. Takahashi, C. Matsumoto, S. Wakao, “Large-Scale and Fast Nonlinear Magnetostatic Field Analysis by the Magnetic Moment Method With the Adaptive Cross Approximation”, IEEE Transactions on Magnetics, vol. 43, no. 4, April 2007, 1277–1280. DOI: 10.1109/TMAG.2006.890973.
  • [11] J. P. Barton, “Empirical Equations for the Magnetization Curve”, Transactions of the American Institute of Electrical Engineers, vol. 52, no. 2, June 1933, 659–664. DOI: 10.1109/T-AIEE.1933.5056367.
  • [12] N.C. Pop, O.F. Caltun, “Jiles-Atherton magnetic hysteresis parameters identification”, Acta Phys. Pol. A, 2011, 120, 491–496.
  • [13] D. C. Jiles, D. L. Atherton “Ferromagnetic hysteresis”, IEEE Trans. Magn., vol. 19, 1983, 2183. DOI: 10.1109/TMAG.1983.1062594.
  • [14] M. M. Ponjavic, M. R. Duric “Nonlinear modeling of the self-oscillating fluxgate current sensor”, IEEE Sensors Journal, vol. 7, 2007, 1546. DOI: 10.1109/JSEN.2007.908234.
  • [15] G. Mirsky, “Magnetic-Core Modeling Offers Insight into Behavior, Operating Range, Saturation”, Electronic Design, Sep 9, 2015.
  • [16] Lagarias, J.C., J. A. Reeds, M. H. Wright, P. E. Wright, “Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions”, SIAM Journal of Optimization, vol. 9, no. 1, 112–147, 1998. DOI:10.1137/S1052623496303470.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b5337e23-d5ad-4315-9872-06811fb079a1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.