PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Formation of the Population of Micromycetes in the Leaf Microbiome of Cereal Cultures Using Different Plant Cultivation Technologies

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The selection of cereal crops varieties as a factor in the regulation of the phytopathogenic microbiome in agrocenoses is an actual direction of the research. Cultivation of such varieties leads to a decrease in the level of biological pollution in agrocenoses and increases the quality as well as safety of agricultural products in agroecosystems. Therefore, the influence of the environmental factors (including abiotic, biotic, anthropogenic, and other) on the formation of micromycete populations in the leaf microbiome of grain crops using different plant cultivation technologies has been thoroughly studied earlier. The results of the selection the plant varieties by the indicators of influence on their population density, the frequency of the occurrence, and the intensity of the micromycete sporulation, were presented in this article. Vegetative organs of plants of the cereal crops (including the oats of Parliamentsky variety, Tembre variety, and spring barley Salomi and Sebastian varieties) were selected in the following phases: tillering, stem stage of growth, and earing. It was determined that using the traditional and organic technologies of plant cultivation in the leaf microbiome of Tembre oats and Salomi variety spring barley, the population density, the frequency of the occurrence of micromycete species, and their sporulation intensity were significantly lower compared to the plants of Parliamentsky oat and Sebastian spring barley. This shows that the cultivation of the cereal crops varieties capable of restraining the formation of micromycete on an ecologically safe level will result in a decrease in the level of biological pollution of agrocenoses and increase the biosafety of plants.
Rocznik
Strony
236--248
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
  • Institute of Agroecology and Environmental Management of NAAS, Metrologichna St. 12, Kyiv, 03143, Ukraine
  • Institute of Agroecology and Environmental Management of NAAS, Metrologichna St. 12, Kyiv, 03143, Ukraine
  • Institute of Agroecology and Environmental Management of NAAS, Metrologichna St. 12, Kyiv, 03143, Ukraine
  • Institute of Agroecology and Environmental Management of NAAS, Metrologichna St. 12, Kyiv, 03143, Ukraine
  • Institute of Agroecology and Environmental Management of NAAS, Metrologichna St. 12, Kyiv, 03143, Ukraine
autor
  • National University of Bioresources and Nature Management of Ukraine, Heroes of Defense St. 15, Kyiv, 03041, Ukraine
  • Institute of Agroecology and Environmental Management of NAAS, Metrologichna St. 12, Kyiv, 03143, Ukraine
  • Institute of Agroecology and Environmental Management of NAAS, Metrologichna St. 12, Kyiv, 03143, Ukraine
Bibliografia
  • 1. Barratt B., Moran V., Bigler F. Van Lenteren J. 2018. The status of biological control and recommendations for improving uptake for the future. Bio-Control, 63, 155–167. http://dx.doi.org/10.1007/s10526–017–9831-y
  • 2. Beznosko I., Gorgan T., Mosiychuk I., Bunyak O., Ternovy Yu. 2022. The influence of different cultivation technologies on the abundance of the main ecological and trophic groups. Bulletin of Lviv University, 86, 58–72. http://dx.doi.org/10.30970/vlubs.2022.86.05 [in Ukrainian]
  • 3. Beznosko I., Gorgan T., Turovnik Yu., Mostovyak I., Mudrak V. 2022. Pathogenic mycobiota of cereal seeds under the influence of different cultivation technologies. Agroecological journal, 1, 110–120. https://doi.org/10.33730/2077–4893.1.2022.255185 [in Ukrainian]
  • 4. Beznosko I., Parfenyuk A., Gorgan Т., Gavrilyuk L., Turovnik Y. 2021. Ecological role of winter wheat varieties is in phytosanitary optimization of agroecosystems. Agrobiology, 180–187. https://doi.org/10.33245/2310–9270–2021–163–1-180–187 [in Ukrainian]
  • 5. Colin K., Elizabeth M., David W. 2013. Identification of pathogenic fungi, 2nd Edition. In: David W. (Ed.). Health Protection Agency. Wiley-Blackwell, USA.
  • 6. Dermenko O. 2016. Wheat ear diseases: diagnosis, harmfulness and protection measures. New offer: Ukrainian magazine on agribusiness, 7/8. 96–100. http://propozitsiya.com/bolezni-kolosa-pshenicy-diagnostika-opasnost-i-mery-zashchity/2016–96–100 [in Ukrainian]
  • 7. Gostinčar C. 2020. Towards genomic criteria for delineating fungal species. Journal of Fungi. 6(4), 246. https://doi.org/10.3390/jof6040246
  • 8. Guaro J., Gene J., Stchigel M., Figueras A. 2012. Atlas of soil Ascomycetes. Ed. by A. Samson Reus Spain, 486.
  • 9. Hardoim P., van Overbeek L., Berg G., Pirttilä A., Compant S., Campisano A., Döring M., Sessitsch A. 2015. The hidden world within plants: Ecological and evolutionary considerations for defining functioning of microbial endophytes. Microb. Mol. Biol. 79 (3), 293–320.
  • 10. Köhl J., Kolnaar R., Ravensberg W. 2019. Mode of Action of Microbial Biological Control Agents against Plant Diseases: Relevance Beyond Efficacy. Front. Plant Sci., 10, 845.
  • 11. Korniychuk M.S. 2015. Methods of controlling the phytosanitary status of field crops. Collection of scientific works of the national scientific center institute of agriculture of the national academy of sciences, 2, 152–163. [in Ukrainian]
  • 12. Koval E., Rudenko A., Voloshchuk N. 2016. Penicillin. Identification guide. Kyiv: National Research and Restoration Center of Ukraine, 408. [in Ukrainian]
  • 13. Lamichhane J. 2017. Pesticide use and risk reduction in European farming systems with IPM: An introduction to the special issue. Crop. Prot., 971–6. http://dx.doi.org/10.1016/j.cropro.2017.01.017
  • 14. Lapin D., Van den Ackerveken G. 2013. Susceptibility to plant disease: more than a failure of host immunity. Trends in Plant Science, 18, 546–554. https://doi.org/10.1016/j.tplants.2013.05.005
  • 15. Marin-Felix Y., Groenewald1 J.Z., Cai L., Chen Q., Marincowitz S., Barnes I. 2017. Genera of phytopathogenic fungi: GOPHY 1. Studies in mycology, 86(1), 99–216. http://dx.doi.org/10.1016/j.simyco.2017.04.002
  • 16. Mostovyak I., Demyaniuk O., Parfeniuk A., Beznosko I. 2020. Variety as a factor in the formation of stable agrocenoses of grain crops. Bulletin of the Poltava State Agrarian Academy, 2, 110–118. https://doi.org/10.31210/visnyk2020.02.13 [in Ukrainian]
  • 17. Ngoune L., Shelton C. 2020. Factors affecting yield of crops. In agronomy–climate change and food security; intech open: London, UK, 32, 137–144. http://dx.doi.org/10.5772/intechopen.90672
  • 18. O’Brien P. 2017. Biological control of plant diseases. Australasian Plant Pathology, 46, 293–304. https://doi.org/10.1007/s13313–017–0481–4
  • 19. Parfeniuk A. 2017. Plant variety as a factor of biological safety in agrocenoses of Ukraine. Agroecological journal, 2, 155–163. http://nbuv.gov.ua/UJRN/agrog_2017_2_22 [in Ukrainian]
  • 20. Parfenyuk A., Voloshchuk N. 2016. Formation of the phytopathogenic background in agrophytocenoses. Agroecological journal, 4, 106. https://doi.org/10.33730/2077–4893.4.2016.271247 [in Ukrainian]
  • 21. Petrenkova V., Luchna I., Borovska I. 2016. Dependence of phytosanitary status of winter wheat crops on weather conditions. Visn. center of sciences provision of APV of the Kharkiv region, 20, 60–68. [in Ukrainian]
  • 22. Reinhold-Hurek B., Bunger W., Burbano C., Sabale M., Hurek T. 2015. Roots shaping their microbiome: global hotspots for microbial activity. Annu. Rev. Phytopathol, 53, 403–424. http://dx.doi.org/10.1146/annurev-phyto-082712–102342
  • 23. Rejeb I., Pastor V., Much-Mani B. 2014. Plant response to simultaneous biotic and abiotic stress: molecular mechanisms. Plants, 458–475. https://doi.org/10.3390/plants3040458
  • 24. Ruytinx J., Miyauchi S., Hartmann-Wittulsky S., Pereira M., Guinet F., Churin J., Put C., Tacon F., Veneault-Fourrey C., Martin F., Kohler A. 2021. A transcriptomic atlas of the ectomycorrhizal fungus Laccaria bicolor. Microorganisms, 9(12), 2612. https://doi.org/10.3390/microorganisms9122612
  • 25. Sessitsch A., Weilharter A., Gerzabek M., Kirchmann H., Kandeler E 2021. Microbial population structures in soil particle size fractions of a longterm fertilizer field experiment. Applied environmental microbiology, 67(9). 4215–24. http://dx.doi.org/10.1128/AEM.67.9.4215–4224.2001
  • 26. Shvartau V., Mykhalska L., Zozulya O. 2017. Spread of fusarium in Ukraine. Ahronomy, 4, 40–43. [in Ukrainian]
  • 27. Soil quality. Determination of the number of microorganisms in the soil by the method of sowing on a solid (agarized) nutrient medium. 2016. DSTU 7847:2015. Effective from 07.01.2016. State standard of Ukraine. [in Ukrainian]
  • 28. Tack A., Dicke M. 2013. Plant pathogens structure arthropod communities acrossmultiple spatial and temporal scales. Functional Ecology, 27, 633–645.
  • 29. Ternovy Yu., Havlyuk V., Parfenyuk A. 2018. Environmentally safe agrotechnologies. Agroecological journal, 4, 50–58. [in Ukrainian]
  • 30. Van Montagu M. 2020. The future of plant biotechnology in a globalized and environmentally endangered world. Genetics and Molecular Biology, 43. http://dx.doi.org/10.1590/1678–4685-GMB-2019–0040
  • 31. Vozhehova R., Kokovikhin S. 2018. Irrigated agriculture is a guarantor of Ukraines food security in the face of climate change. Herald of Agrarian Science, 11, 28–34. [in Ukrainian]
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b52fe6b7-9af6-481e-9cad-f014cd526bb2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.