PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Snoring Sound Recognition Using Multi-Channel Spectrograms

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Obstructive sleep apnea-hypopnea syndrome (OSAHS) is a common and high-risk sleep-related breathing disorder. Snoring detection is a simple and non-invasive method. In many studies, the feature maps are obtained by applying a short-time Fourier transform (STFT) and feeding the model with single-channel input tensors. However, this approach may limit the potential of convolutional networks to learn diverse representations of snore signals. This paper proposes a snoring sound detection algorithm using a multi-channel spectrogram and convolutional neural network (CNN). The sleep recordings from 30 subjects at the hospital were collected, and four different feature maps were extracted from them as model input, including spectrogram, Mel-spectrogram, continuous wavelet transform (CWT), and multi-channel spectrogram composed of the three single-channel maps. Three methods of data set partitioning are used to evaluate the performance of feature maps. The proposed feature maps were compared through the training set and test set of independent subjects by using a CNN model. The results show that the accuracy of the multi-channel spectrogram reaches 94.18%, surpassing that of the Mel-spectrogram that exhibits the best performance among the single-channel spectrograms. This study optimizes the system in the feature extraction stage to adapt to the superior feature learning capability of the deep learning model, providing a more effective feature map for snoring detection.
Rocznik
Strony
169--178
Opis fizyczny
Bibliogr. 38 poz., rys., tab., wykr.
Twórcy
autor
  • School of Physics and Optoelectronics, South China University of Technology Guangzhou, China
autor
  • School of Physics and Optoelectronics, South China University of Technology Guangzhou, China
  • State Key Laboratory of Respiratory Disease, Department of Otolaryngology-Head and Neck Surgery Laboratory of ENT-HNS Disease, First Affiliated Hospital, Guangzhou Medical University Guangzhou, China
autor
  • State Key Laboratory of Respiratory Disease, Department of Otolaryngology-Head and Neck Surgery Laboratory of ENT-HNS Disease, First Affiliated Hospital, Guangzhou Medical University Guangzhou, China
Bibliografia
  • 1. Abdel-Hamid O., Mohamed A., Jiang H., Deng L., Penn G., Yu D. (2014), Convolutional neural networks for speech recognition, IEEE/ACM Transactions on Audio, Speech, and Language Processing, 22(10): 1533-1545, doi: 10.1109/TASLP.2014.2339736.
  • 2. Abdel-Hamid O., Mohamed A., Jiang H., Penn G. (2012), Applying convolutional neural networks concepts to hybrid NN-HMM model for speech recognition, [in:] 2012 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 4277-4280, doi: 10.1109/ICASSP.2012.6288864.
  • 3. Adavanne S., Politis A., Virtanen T. (2018), Multichannel sound event detection using 3D convolutional neural networks for learning inter-channel features, [in:] 2018 International Joint Conference on Neural Networks, pp. 1-7, doi: 10.1109/IJCNN.2018.8489542.
  • 4. Ahmadi N., Shapiro G.K., Chung S.A., Shapiro C.M. (2009), Clinical diagnosis of sleep apnea based on single night of polysomnography vs. two nights of polysomnography, Sleep Breath, 13(3): 221-226, doi: 10.1007/s11325-008-0234-2.
  • 5. Ankishan H., Ari F. (2011), Snore-related sound classification based on time-domain features by using ANFIS model, [in:] 2011 International Symposium on Innovations in Intelligent Systems and Applications, pp. 441-444, doi: 10.1109/INISTA.2011.5946113.
  • 6. Ankıshan H., Yılmaz D. (2013), Comparison of SVM and ANFIS for Snore related sounds classification by using the largest Lyapunov exponent and entropy, Computational and Mathematical Methods in Medicine, 2013: 238937, doi: 10.1155/2013/238937.
  • 7. Arias-Vergara T., Klumpp P., Vasquez-Correa J.C., Nöth E., Orozco-Arroyave J.R., Schuster M. (2021), Multi-channel spectrograms for speech processing applications using deep learning methods, Pattern Analysis and Applications, 24(2): 423-431, doi: 10.1007/s10044-020-00921-5.
  • 8. Beck R., Odeh M., Oliven A., Gavriely N. (1995), The acoustic properties of snores, European Respiratory Journal, 8(12): 2120-2128, doi: 10.1183/09031936.95.08122120.
  • 9. Cavusoglu M., Kamasak M., Erogul O., Ciloglu T., Serinagaoglu Y., Akcam T. (2007), An efficient method for snore/nonsnore classification of sleep sounds, Physiological Measurement, 28(8): 841-853, doi: 10.1088/0967-3334/28/8/007/.
  • 10. Cheng S. et al. (2022), Automated sleep apnea detection in snoring signal using long short-term memory neural networks, Biomedical Signal Processing and Control, 71(Part B): 103238, doi: 10.1016/j.bspc.2021.103238.
  • 11. Dafna E., Tarasiuk A., Zigel Y. (2013), Automatic detection of whole night snoring events using non-contact microphone, PLOS ONE, 8(12): e84139, doi: 10.1371/journal.pone.0084139.
  • 12. Duckitt W.D., Tuomi S.K., Niesler T.R. (2006), Automatic detection, segmentation and assessment of snoring from ambient acoustic data, Physiological Measurement, 27(10): 1047-1056, doi: 10.1088/0967-3334/27/10/010.
  • 13. Fiz J.A. et al. (1996), Acoustic analysis of snoring sound in patients with simple snoring and obstructive sleep apnoea, European Respiratory Journal, 9(11): 2365-2370, doi: 10.1183/09031936.96.09112365.
  • 14. Fu S., Hu T., Tsao Y., Lu X. (2017), Complex spectrogram enhancement by convolutional neural network with multi-metrics learning, [in:] 2017 IEEE 27th International Workshop on Machine Learning for Signal Processing, pp. 1-6, doi: 10.1109/MLSP.2017.8168119.
  • 15. Hinton G.E., Srivastava N., Krizhevsky A., Sutskever I., Salakhutdinov R.R. (2012), Improving neural networks by preventing co-adaptation of feature detectors, ArXiv, doi: 10.48550/arXiv.1207.0580.
  • 16. Huzaifah M. (2017), Comparison of time-frequency representations for environmental sound classification using convolutional neural networks, ArXiv, doi: 10.48550/arXiv.1706.07156.
  • 17. Ip M.S., Lam B., Ng M.M., Lam W.K., Tsang K.W., Lam K.S. (2002), Obstructive sleep apnea is independently associated with insulin resistance, American Journal of Respiratory and Critical Care Medicine, 165(5): 670-676, doi: 10.1164/ajrccm.165.5.2103001.
  • 18. Jiang Y., Peng J., Zhang X. (2020), Automatic snoring sounds detection from sleep sounds based on deep learning, Physical and Engineering Sciences in Medicine, 43(2): 679-689, doi: 10.1007/s13246-020-00876-1.
  • 19. Karunajeewa A.S., Abeyratne U.R., Hukins C. (2008), Silence-breathing-snore classification from snore-related sounds, Physiological Measurement, 29(2): 227-243, doi: 10.1088/0967-3334/29/2/006.
  • 20. Khan T. (2019), A deep learning model for snoring detection and vibration notification using a smart wearable gadget, Electronics, 8(9): 987, doi: 10.3390/electronics8090987.
  • 21. Maimon N., Hanly P.J. (2010), Does snoring intensity correlate with the severity of obstructive sleep apnea?, Journal of Clinical Sleep Medicine, 6(5): 475-478, doi: 10.5664/jcsm.27938.
  • 22. Mendonça F., Mostafa S.S., Ravelo-García A.G., Morgado-Dias F., Penzel T. (2019), A review of obstructive sleep apnea detection approaches, IEEE Journal of Biomedical and Health Informatics, 23(2): 825-837, doi: 10.1109/JBHI.2018.2823265.
  • 23. Ng A.K., Koh T.S., Baey E., Lee T.H., Abeyratne U.R., Puvanendran K. (2008), Could formant frequencies of snore signals be an alternative means for the diagnosis of obstructive sleep apnea?, Sleep Medicine, 9(8): 894-898, doi: 10.1016/j.sleep.2007.07.010.
  • 24. Peng P., He Z., Wang L. (2019), Automatic classification of microseismic signals based on MFCC and GMM-HMM in underground mines, Shock and Vibration, 2019: 5803184, doi: 10.1155/2019/5803184.
  • 25. Perez-Padilla J.R., Slawinski E., Difrancesco L.M., Feige R.R., Remmers J.E., Whitelaw W.A. (1993), Characteristics of the snoring noise in patients with and without occlusive sleep apnea, American Review of Respiratory Disease, 147(3): 635-644, doi: 10.1164/ajrccm/147.3.635.
  • 26. Pevernagie D., Aarts R.M., De Meyer M. (2010), The acoustics of snoring, Sleep Medicine Reviews, 14(2): 131-144, doi: 10.1016/j.smrv.2009.06.002.
  • 27. Qian K. et al. (2019), A Bag of wavelet features for snore sound classification, Annals of Biomedical Engineering, 47(4): 1000-1011, doi: 10.1007/s10439-019-02217-0.
  • 28. Rabiner L.R., Gold B., Yuen C.K. (1975), Theory and application of digital signal processing, IEEE Transactions on Systems, Man, and Cybernetics, 8(2): 146-146, doi: 10.1109/TSMC.1978.4309918.
  • 29. Senaratna C.V. et al. (2017), Prevalence of obstructive sleep apnea in the general population: A systematic review, Sleep Medicine Reviews, 34: 70-81, doi: 10.1016/j.smrv.2016.07.002.
  • 30. Sola-Soler J., Jane R., Fiz J.A., Morera J. (2003), Spectral envelope analysis in snoring signals from simple snorers and patients with obstructive sleep apnea, [in:] Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 3: 2527-2530, doi: 10.1109/IEMBS.2003.1280430.
  • 31. Strollo P.J., Rogers R.M. (1996), Obstructive sleep apnea, New England Journal of Medicine, 334(2): 99-104, doi: 10.1056/NEJM199601113340207.
  • 32. Sun X., Peng J., Zhang X., Song L. (2022), Effective feature selection based on Fisher Ratio for snoring recognition using different validation methods, Applied Acoustics, 186: 108483, doi: 10.1016/j.apacoust.2021.108429.
  • 33. Winursito A., Hidayat R., Bejo A. (2018), Improvement of MFCC feature extraction accuracy using PCA in Indonesian speech recognition, [in:] 2018 International Conference on Information and Communications Technology, pp. 379-383, doi: 10.1109/ICOIACT.2018.8350748.
  • 34. Won T.B. et al. (2012), Acoustic characteristics of snoring according to obstruction site determined by sleep videofluoroscopy, Acta Oto-Laryngologica, 132: 13-20, doi: 10.3109/00016489.2012.660733.
  • 35. Xie J. et al. (2021), Audio-based snore detection using deep neural networks, Computer Methods and Programs in Biomedicine, 200: 105917, doi: 10.1016/j.cmpb.2020.105917.
  • 36. Xu K. et al. (2018), Mixup-based acoustic scene classification using multi-channel convolutional neural network, [in:] Advances in Multimedia Information Processing - PCM 2018, pp. 14-23, doi: 10.48550/arXiv.1805.07319.
  • 37. Yadollahi A., Moussavi Z. (2010), Automatic breath and snore sounds classification from tracheal and ambient sounds recordings, Medical Engineering & Physics, 32(9): 985-990, doi: 10.1016/j.medengphy.2010.06.013.
  • 38. Young T., Peppard P.E., Gottlieb D.J. (2002), Epidemiology of obstructive sleep apnea: A population health perspective, American Journal of Respiratory and Critical Care Medicine, 165(9): 1217-1239, doi: 10.1164/rccm.2109080.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b52fa4ba-add2-4b01-8722-64d3c9b3a11b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.