Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, we prove the existence of weak heteroclinic solutions for a family of anisotropic difference equations under competition phenomena between parameters.
Czasopismo
Rocznik
Tom
Strony
733--745
Opis fizyczny
Bibliogr. 11 poz.
Twórcy
autor
- Laboratoire de Mathématiques et Informatique (LAMI) UFR. Sciences Exactes et Appliquées Université de Ouagadougou 03 BP 7021 Ouaga 03 Ouagadougou, Burkina Faso
autor
- Laboratoire de Mathématiques et Informatique (LAMI) UFR. Sciences Exactes et Appliquées Université de Ouagadougou 03 BP 7021 Ouaga 03 Ouagadougou, Burkina Faso
autor
- Laboratoire de Mathématiques et Informatique (LAMI) UFR. Sciences Exactes et Appliquées Université de Ouagadougou 03 BP 7021 Ouaga 03 Ouagadougou, Burkina Faso
Bibliografia
- [1] H. Brézis, Analyse Fonctionnelle: Théorie et Applications, Paris, Masson, 1983.
- [2] A. Cabada, C. Li, S. Tersian, On homoclinic solutions of a semilinear p-Laplacian difference equation with periodic coefficients, Adv. Difference Equ. 2010, Art. ID 195376, 17 pp.
- [3] L. Diening, Theoretical and numerical results for electrorheological fluids, Ph.D. Thesis, University of Freiburg, Germany, 2002.
- [4] A. Guiro, B. Koné, S. Ouaro, Weak Homoclinic solutions of anisotropic difference equations with variable exponents, Adv. Difference Equ. 154 (2013), 13 pp.
- [5] A. Guiro, B. Koné, S. Ouaro, Weak heteroclinic solutions of anisotropic difference equations with variable exponent, Electron. J. Differential Equations 225 (2013), 1–9.
- [6] J. Leray, J. L. Lions, Quelques résultats de Visik sur les problèmes elliptiques non linéaires par les méthodes de Minty et Browder, Bull. Soc. Math. France. 93 (1965), 97–107.
- [7] M. Mihailescu, P. Pucci, V. Radulescu, Eigenvalue problems for anisotropic quasilinear elliptic equations with variable exponent, J. Math. Anal. Appl. 340 (2008) 1, 687–698.
- [8] M. Mihailescu, V. Radulescu, S. Tersian, Homoclinic solutions of difference equations with variable exponents, Topol. Methods Nonlinear Anal. 38 (2011) 2, 277–289.
- [9] S. Ouaro, Well-posedness results for anisotropic nonlinear elliptic equations with variable exponent and L1-data, Cubo J. 12 (2010) 1, 133–148.
- [10] K.R. Rajagopal, M. Ruzicka, Mathematical modeling of electrorheological materials, Contin. Mech. Thermodyn. 13 (2001), 59–78.
- [11] M. Ruzicka, Electrorheological Fluids: Modelling and Mathematical Theory, Lecture Notes in Mathematics 1748, Springer-Verlag, Berlin, 2002
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b52d79a4-ce38-45a1-8e9b-637badcfc79b