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1. INTRODUCTION

In this paper, we study the following nonlinear anisotropic discrete problem with
heteroclinic condition at the boundary
{
−∆(a(k − 1,∆u(k − 1))) + α(k)g(k, u(k)) = δ(k)f(k, u(k)), k ∈ Z∗,
u(0) = 0, lim

k→−∞
u(k) = −1, lim

k→+∞
u(k) = 1,

(1.1)

where ∆u(k) = u(k+1)−u(k) is the forward difference operator, Z∗ := {k ∈ Z : k 6= 0}
and a, α, δ, f, g are functions to be defined later.

Difference equations can be seen as a discrete counterpart of PDEs and are usually
studied in connection with numerical analysis. In this way, the main operator in
Problem (1.1)

−∆(a(k − 1,∆u(k − 1)))

can be seen as a discrete counterpart of the anisotropic operator

−
N∑

i=1

∂

∂xi
a
(
x,

∂

∂xi
u
)
.
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Note that anisotropic PDEs with as main operators, the operator above was studied
by many authors under Leray-Lions type conditions (see [6]) in the context of variable
exponents (see [3, 5, 7, 9–11]). Therefore, the problem (1.1) can be seen as a discrete
counterpart of such PDEs under nonhomogeneous Dirichlet boundary conditions.

We adapt in this paper the classical minimization methods used for the study of
anisotropic PDEs to prove the existence of solution of problem (1.1). Note that we
examine anisotropic difference equations on unbounded discrete interval, typically, on
the whole set Z, with asymptotic conditions of heteroclinic type. The first study in
that direction for constant exponents was done by Cabada et al. [2] and for variable
exponent by Mihailescu et al. [8] (see also [4]). In [4], the authors studied the following
problem:




−∆(a(k − 1,∆u(k − 1))) + |u(k)|p(k)−2u(k) = f(k), k ∈ Z,

lim
|k|→∞

u(k) = 0. (1.2)

They proved an existence result of weak homoclinic solution of (1.2).
In this paper, we prove an existence result of (1.1) and for that, we define other

new spaces and new associated norms compared to that of [4]. Some of the norms
defined may be equivalent in order to prove the main result of this paper. Note also
that in our study, we show some competition phenomena between α(·) and δ(·). Such
competition phenomena are also necessary for the proof of the existence of weak
heteroclinic solution of (1.1).

The study of heteroclinic connections for boundary value problems has had a
certain impulse in recent years, motivated by applications in various biological, phys-
ical and chemical models, such has phase-transition, physical processes in which the
variable transits from an unstable equilibrium to a stable one, or front-propagation in
reaction-diffusion equations. Indeed, heteroclinic solutions are often called transitional
solutions.

The paper is organized as follows. Section 2 is devoted to the mathematical pre-
liminary. In Section 3, we study problem (1.1), therefore, we prove the existence of
weak heteroclinic solutions of (1.1).

2. AUXILIARY RESULTS

We set Z−∗ := {k ∈ Z : k < 0}, Z+
∗ := {k ∈ Z : k > 0}, Z− := {k ∈ Z : k ≤ 0} and

Z+ := {k ∈ Z : k ≥ 0}. For the data f , α and a, we assume the following.

(H1) a(k, ·) : R→ R, k ∈ Z, and there exists a mapping A : Z×R→ R which satisfies
a(k, ξ) = ∂

∂ξA(k, ξ) for all k ∈ Z and A(k, 0) = 0 for all k ∈ Z.
(H2) p : Z → (1,+∞) with 1 < p− ≤ p+ < +∞, where p+ := supk∈Z p(k) and

p− := infk∈Z p(k).
(H3) |ξ|p(k) ≤ a(k, ξ)ξ ≤ p(k)A(k, ξ) for all k ∈ Z and ξ ∈ R.
(H4) there exists C1 > 0 such that for all k ∈ Z and ξ ∈ R we have |a(k, ξ)| ≤

C1(j(k) + |ξ|p(k)−1) with j ∈ lp′(·), where 1
p(k) + 1

p′(k) = 1.
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(H5) (a(k, ξ)− a(k, η)) .(ξ − η) > 0 for all k ∈ Z and ξ, η ∈ R such that ξ 6= η.
(H6) f : Z× R→ R and there exists C2 > 0 such that

|f(k, t)| ≤ C2(1 + |t− 1|p(k)−1)χZ+ + C2(1 + |t+ 1|p(k)−1)χZ−∗ ,

for all k ∈ Z, t ∈ R, where χA(k) = 1 if k ∈ A and χA(k) = 0 if k /∈ A.

This assumption implies that
{
|f(k, t+ 1)| ≤ C2(1 + |t|p(k)−1) if k ≥ 0,

|f(k, t− 1)| ≤ C2(1 + |t|p(k)−1) if k < 0,

so by denoting

F (k, t) =

t∫

0

f(k, τ)dτ for k ∈ Z, t ∈ R,

we deduce that there exists a positive constant C ′2 > 1 such that
{
|F (k, t+ 1)| ≤ C ′2(1 + |t|p(k)) if k ≥ 0,

|F (k, t− 1)| ≤ C ′2(1 + |t|p(k)) if k < 0.

(H7) α : Z→ R and δ : Z→ R are such that α(k) ≥ α0 > 0 for all k ∈ Z,

0 < δ(k) ≤ δ̄ = sup
k∈Z
|δ(k)| < +∞ and δ ∈ l1 :=

{
u : Z→ R;

∑

k∈Z
|u(k)| < +∞

}
.

(H8) α0 > δ̄p+C ′2.
(H9) g(k, t) = |t− 1|p(k)−2 (t− 1)χZ+(k) + |t+ 1|p(k)−2 (t+ 1)χZ−(k).

Remark 2.1. The condition α0 > δ̄p+C ′2 on the data means that the parameter
α(·) should be bigger than the parameter δ̄. This condition is called competition
phenomena between α(·) and δ(·).

In order to present the main result, for each p(·) : Z→ (1,+∞), we introduce the
following spaces:

l∞ =
{
u : Z→ R; sup

k∈Z
|u(k)| <∞

}
,

l
p(·)
0 =

{
u : Z→ R; u(0) = 0 and ρp(·)(u) :=

∑

k∈Z
|u(k)|p(k) < +∞

}
,

l
p(·)
0,+ =

{
u : Z→ R; u(0) = 0 and ρp+(·)(u) :=

∑

k∈Z+

|u(k)|p(k) < +∞
}
,

l
p(·)
0,− =

{
u : Z→ R; u(0) = 0 and ρp−(·)(u) :=

∑

k∈Z−
|u(k)|p(k) < +∞

}
,
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l
p(·)
0,α(·) =

{
u : Z→ R; u(0) = 0 and ρα(·),p(·)(u) :=

∑

k∈Z
α(k)|u(k)|p(k) < +∞

}
,

l
p(·)
0,+,α(·) =

{
u : Z→ R; u(0) = 0 and ρα(·),p+(·)(u) :=

∑

k∈Z+

α(k)|u(k)|p(k) < +∞
}
,

l
p(·)
0,−,α(·) =

{
u : Z→ R; u(0) = 0 and ρα(·),p−(·)(u) :=

∑

k∈Z−
α(k)|u(k)|p(k) < +∞

}
,

W1,p(·)
0,α(·) =

{
u : Z→ R; u(0) = 0 and ρ1,α(·),p(·)(u) :=

∑

k∈Z
α(k)|u(k)|p(k)

+
∑

k∈Z
|∆u(k)|p(k) < +∞

}
.

W1,p(·)
0,+,α(·) =

{
u : Z→ R;u(0) = 0 and ρ1,α(·),p+(·)(u) :=

∑

k∈Z+

α(k)|u(k)|p(k)

+
∑

k∈Z+

|∆u(k)|p(k) < +∞
}

=
{
u : Z→ R;u ∈ lp(·)0,+,α(·), ∆u(k) ∈ lp(·)0,+ and u(0) = 0

}
,

and

W1,p(·)
0,−,α(·) =

{
u : Z→ R;u(0) = 0 and ρ1,α(·),p+(·)(u) :=

∑

k∈Z−
α(k)|u(k)|p(k)

+
∑

k∈Z−
|∆u(k)|p(k) < +∞

}

=
{
u : Z→ R;u ∈ lp(·)0,−,α(·), ∆u(k) ∈ lp(·)0,− and u(0) = 0

}
.

On lp(·)0,+ and lp(·)0,+,α(·) we introduce the Luxemburg norms

‖u‖p+(·) := inf

{
λ > 0;

∑

k∈Z+

∣∣∣∣
u(k)

λ

∣∣∣∣
p(k)

≤ 1

}
,

‖u‖α(·),p+(·) := inf

{
λ > 0;

∑

k∈Z+

α(k)

∣∣∣∣
u(k)

λ

∣∣∣∣
p(k)

≤ 1

}

and we deduce that

‖u‖1,α(·),p+(·) = ‖u‖α(·),p+(·) + ‖∆u‖p+(·)

is a norm on the space W1,p(·)
0,+,α(·). We replace Z+ by Z− to get the norms on l

p(·)
0,−,

l
p(·)
0,−,α(·) and W

1,p(·)
0,−,α(·).
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Remark 2.2.

1) lp(·)0,+,α(·) ⊃ l
p(·)
0,α(·), l

p(·)
0,−,α(·) ⊃ l

p(·)
0,α(·), W

1,p(·)
0,+,α(·) ⊃ W

1,p(·)
0,α(·) and W1,p(·)

0,−,α(·)⊃W
1,p(·)
0,α(·).

Indeed, α(k)|u(k)|p(k) is nonnegative for all k ∈ Z. Therefore, if∑
k∈Z α(k)|u(k)|p(k) < +∞, then

∑
k∈Z+ α(k)|u(k)|p(k) < +∞.

2) Since for every k ∈ Z, a(k, ·) is a gradient and is monotone, then the primitive
A(k, ·) of a(k, ·) is necessarily convex.

3) As an example of functions which satisfy the assumptions (H1)–(H5), we can give
the following:
a) A(k, ξ) = 1

p(k) |ξ|
p(k), where a(k, ξ) = |ξ|p(k)−2 ξ for all k ∈ Z and ξ ∈ R.

b) A(k, ξ) = 1
p(k)

[(
1 + |ξ|2

)p(k)/2
− 1

]
, where a(k, ξ) =

(
1 + |ξ|2

)(p(k)−2)/2
ξ for

all k ∈ Z and ξ ∈ R.

As in [4], we can prove the following results.

Lemma 2.3. Under assumption (H2), we have:

a) ρα(·),p+(·)(u+ v) ≤ 2p+(ρα(·),p+(·)(u) + ρα(·),p+(·)(v)) for all u, v ∈ lp(·)0,+,α(·),

b) for u ∈ lp(·)0,+,α(·), if λ > 1, then

ρα(·),p+(·)(u) ≤ λρα(·),p+(·)(u) ≤ λp−ρα(·),p+(·)(u)

≤ ρα(·),p+(·)(λu) ≤ λp+ρα(·),p+(·)(u)

and if 0 < λ < 1, then

λp
+

ρα(·),p+(·)(u) ≤ ρα(·),p(·)(λu) ≤ λp−ρα(·),p+(·)(u)

≤ λρα(·),p+(·)(u) ≤ ρα(·),p+(·)(u),

c) for every fixed u ∈ lp(·)0,+,α(·)\{0}, ρα(·),p+(·)(λu) is continuous convex even function
in λ, and it increases strictly when λ ∈ [0,∞).

Proposition 2.4. Let u ∈ lp(·)0,+,α(·) \ {0}. Then

‖u‖α(·),p+(·) = γ ⇔ ρα(·),p+(·)
(u
γ

)
= 1.

Proposition 2.5. If u ∈ lp(·)0,+,α(·) and p
+ < +∞, then the following properties hold:

1) ‖u‖α(·),p+(·) < 1(= 1; > 1)⇔ ρα(·),p+(·)(u) < 1(= 1;> 1),

2) ‖u‖α(·),p+(·) > 1⇒ ‖u‖p
−

α(·),p+(·) ≤ ρα(·),p+(·)(u) ≤ ‖u‖p+α(·),p+(·),

3) ‖u‖α(·),p+(·) < 1⇒ ‖u‖p
+

α(·),p+(·) ≤ ρα(·),p+(·)(u) ≤ ‖u‖p−α(·),p+(·),
4) ‖u‖α(·),p+(·) → 0⇔ ρα(·),p+(·)(u)→ 0.
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Proposition 2.6. Let u ∈W 1,p(·)
0,+,α(·) \ {0}. Then

‖u‖1,α(·),p+(·) = a ⇔ ρ1,α(·),p+(·)
(u
a

)
= 1.

Proposition 2.7. If u ∈W 1,p(·)
0,+,α(·) and p

+ < +∞, then the following properties hold:

1) ‖u‖1,α(·),p+(·) < 1(= 1; > 1)⇔ ρ1,α(·),p+(·)(u) < 1(= 1;> 1),

2) ‖u‖1,α(·),p+(·) > 1⇒ ‖u‖p
−

1,α(·),p+(·) ≤ ρ1,α(·),p+(·)(u) ≤ ‖u‖p+1,α(·),p+(·),

3) ‖u‖1,α(·),p+(·) < 1⇒ ‖u‖p
+

1,α(·),p+(·) ≤ ρ1,α(·),p+(·)(u) ≤ ‖u‖p−1,α(·),p+(·),
4) ‖u‖1,α(·),p+(·) → 0⇔ ρ1,α(·),p+(·)(u)→ 0.

We also have the following lemma (see [4]).

Lemma 2.8 (Hölder type inequality). Let u ∈ l
p(·)
0,+,α(·) and v ∈ l

q(·)
0,+,α(·) such that

1
p(k) + 1

q(k) = 1 for all k ∈ Z. Then
∑

k∈Z+

|uv| ≤
( 1

p−
+

1

q−

)
‖u‖α(·),p+(·)‖v‖α(·),q+(·).

Remark 2.9. The properties above also hold for the spaces lp(·)0,α(·), l
p(·)
0,−,α(·) and

W1,p(·)
0,−,α(·).

3. EXISTENCE OF WEAK HETEROCLINIC SOLUTIONS

In this section, we study the existence of weak heteroclinic solutions of (1.1) where δ
is a positive function.

Definition 3.1. A weak heteroclinic solution of (1.1) is a function u ∈ W1,p(·)
0,α(·) such

that
∑

k∈Z
a(k − 1,∆u(k − 1))∆v(k − 1) +

∑

k∈Z
α(k)g(k, u(k))v(k)

=
∑

k∈Z
δ(k)f(k, u(k))v(k)

(3.1)

for any v : Z→ R, with u(0) = 0, limk→−∞ u(k) = −1 and limk→+∞ u(k) = 1.

We have the following result.

Theorem 3.2. Assume that (H1)–(H9) hold. Then, there exists at least one weak
heteroclinic solution of (1.1).

To prove Theorem 3.2, we first consider that the following problem:




−∆(a(k − 1,∆u(k − 1))) + α(k) |u(k)|p(k)−2 u(k) = δ(k)f(k, u(k) + 1), k ∈ Z+
∗ ,

u(0) = 0, limk→+∞ u(k) = 0,

(3.2)
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admits at least a weak solution in the following sense.

Definition 3.3. A weak solution of (3.2) is a function u ∈ W1,p(·)
0,+,α(·) satisfying

+∞∑

k=1

a(k − 1,∆u(k − 1))∆v(k − 1) +
+∞∑

k=1

α(k) |u(k)|p(k)−2 u(k)v(k)

=
+∞∑

k=1

δ(k)f(k, u(k) + 1)v(k),

(3.3)

for any v ∈ W1,p(·)
0,+,α(·).

Theorem 3.4. Assume that (H1)–(H9) hold. Then, there exists at least one weak
solution of (3.2).

To prove Theorem 3.4, we first consider some auxiliary results.
The energy functional corresponding to problem (3.2) is defined by J :W1,p(·)

0,+,α(·)→R
such that

J(u) =
+∞∑

k=1

A(k − 1,∆u(k − 1)) +
+∞∑

k=1

α(k)

p(k)
|u(k)|p(k) −

+∞∑

k=1

δ(k)F (k, u(k) + 1). (3.4)

We first present some basic properties of J .

Proposition 3.5. The functional J is well-defined on W1,p(·)
0,+,α(·) and is of class

C1(W1,p(·)
0,+,α(·),R) with the derivative given by

〈J ′(u), v〉 =
+∞∑

k=1

a(k − 1,∆u(k − 1))∆v(k − 1)

+
+∞∑

k=1

α(k)|u(k)|p(k)−2u(k)v(k)−
+∞∑

k=1

δ(k)f(k, u(k) + 1)v(k)

(3.5)

for all u, v ∈ W1,p(·)
0,+,α(·).

Proof. Let J(u) = I(u) + L(u)− Λ(u) with

I(u) =
+∞∑

k=1

A(k − 1,∆u(k − 1)), L(u) =
+∞∑

k=1

α(k)

p(k)
|u(k)|p(k)

and

Λ(u) =
+∞∑

k=1

δ(k)F (k, u(k) + 1).
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Then, by (H4), we get

|I(u)| =
∣∣∣∣∣
+∞∑

k=1

A(k − 1,∆u(k − 1))

∣∣∣∣∣ ≤
+∞∑

k=1

|A(k − 1,∆u(k − 1))|

≤
+∞∑

k=1

C1

(
j(k − 1) +

1

p(k − 1)
|∆u(k − 1)|p(k−1)−1

)
|∆u(k − 1)|

≤
+∞∑

k=1

C1j(k − 1)|∆u(k − 1)|+
+∞∑

k=1

C1

p(k − 1)
|∆u(k − 1)|p(k−1) < +∞.

By (H2) and (H7), we obtain

|L(u)| =
∣∣∣∣∣
+∞∑

k=1

α(k)

p(k)
|u(k)|p(k)

∣∣∣∣∣ ≤
1

p−

+∞∑

k=1

α(k)|u(k)|p(k) < +∞.

Owing to (H6), we deduce that

|Λ(u)| =
∣∣∣∣∣
+∞∑

k=1

δ(k)F (k, u(k) + 1)

∣∣∣∣∣ ≤
+∞∑

k=1

|δ(k)||F (k, u(k) + 1)|

≤
+∞∑

k=1

C ′2|δ(k)|
(

1 + |u(k)|p(k)
)
≤ C ′2

+∞∑

k=1

|δ(k)|+ C ′2

+∞∑

k=0

|δ(k)||u(k)|p(k) < +∞.

Therefore, J is well-defined. Clearly I, L and Λ are in C1(W1,p(·)
0,+,α(·),R). In what

follows, we prove (3.5). Let us choose u, v ∈ W1,p(·)
0,+,α(·). We have

〈I ′(u), v〉 = lim
η→0+

I(u+ ηv)− I(u)

η
, 〈L′(u), v〉 = lim

η→0+

L(u+ ηv)− L(u)

η

and
〈Λ′(u), v〉 = lim

η→0+

Λ(u+ ηv)− Λ(u)

η
.

Since

lim
η→0+

I(u+ ηv)− I(u)

η

= lim
η→0+

+∞∑

k=1

A(k − 1,∆u(k − 1) + η∆v(k − 1))−A(k − 1,∆u(k − 1))

η

=
+∞∑

k=1

lim
η→0+

A(k − 1,∆u(k − 1) + η∆v(k − 1))−A(k − 1,∆u(k − 1))

η

=
+∞∑

k=1

a(k − 1,∆u(k − 1))∆v(k − 1),
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according to (H1),

lim
η→0+

L(u+ ηv)− L(u)

η
= lim
η→0+

+∞∑

k=1

α(k)(|u(k) + ηv(k)|p(k) − |u(k)|p(k))
p(k)η

=

+∞∑

k=1

lim
η→0+

α(k)(|u(k) + ηv(k)|p(k) − |u(k)|p(k))
p(k)η

=

+∞∑

k=1

α(k)|u(k)|p(k)−2u(k)v(k)

and

lim
η→0+

Λ(u+ ηv)− Λ(u)

η
= lim
η→0+

+∞∑

k=1

δ(k)(F (k, u(k) + ηv(k) + 1)− F (k, u(k) + 1))

η

=
+∞∑

k=1

lim
η→0+

δ(k)(F (k, u(k) + ηv(k) + 1)− F (k, u(k) + 1))

η

=
+∞∑

k=1

δ(k)f(k, u(k) + 1)v(k),

we obtain (3.5).

Lemma 3.6. The functional I is weakly lower semi-continuous.

Proof. From (H1) and (H5), I is convex with respect to the second variable. Thus,
it is enough to show that I is lower semi-continuous (see Corollary III.8 in [1]). For
this, we fix u ∈ W1,p(·)

0,+,α(·) and ε > 0. Since I is convex, we deduce that

I(v) ≥ I(u) + 〈I ′(u), v − u〉

≥ I(u) +
+∞∑

k=1

a(k − 1,∆u(k − 1)) (∆v(k − 1)−∆u(k − 1))

≥ I(u)− C
( 1

p−
+

1

p′−

)
‖ḡ‖p′+(·)‖∆(u− v)‖p+(·),

where ḡ(k) = j(k − 1) + |∆u(k − 1)|p(k−1)−1

≥ I(u)−K
(
‖u− v‖α(·),p+(·) + ‖∆(u− v)‖p+(·)

)

≥ I(u)−K‖u− v‖1,α(·),p+(·)

≥ I(u)− ε

for all v ∈ W1,p(·)
0,+,α(·) with ‖u − v‖1,α(·),p+(·) < ξ = ε

K . Hence, we conclude that I is
weakly lower semi-continuous.
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Proposition 3.7. The functional J is bounded from below, coercive and weakly lower
semi-continuous.

Proof. By Lemma 3.6, since I is weakly lower semi-continuous, J is weakly lower
semi-continuous. We will only prove the coerciveness of the energy functional since
the boundedness from below of J arises from its coercivity. To prove the coerciveness
of J , we may assume that ‖u‖1,α(·),p+(·) > 1. According to (H2), (H3), (H6) and (H7),
we have

J(u) =
+∞∑

k=1

A(k − 1,∆u(k − 1)) +
+∞∑

k=1

α(k)

p(k)
|u(k)|p(k) −

+∞∑

k=1

δ(k)F (k, u(k) + 1)

≥
+∞∑

k=1

1

p(k − 1)
|∆u(k − 1)|p(k−1) +

+∞∑

k=1

α(k)

p(k)
|u(k)|p(k) −

+∞∑

k=1

|δ(k)F (k, u(k) + 1)|

≥ 1

p+

+∞∑

k=1

|∆u(k − 1)|p(k−1) +
1

p+

+∞∑

k=1

α(k)|u(k)|p(k) −
+∞∑

k=1

C ′2|δ(k)|

−
+∞∑

k=1

C ′2|δ(k)||u(k)|p(k)

≥ 1

p+
(ρp+(·)(∆u) + ρα(·),p+(·)(u))− δ̄C ′2

α0

+∞∑

k=1

α(k)|u(k)|p(k) −M

≥ 1

p+
ρ1,α(·),p+(·)(u)− δ̄C ′2

α0
ρα(·),p+(·)(u)−M

≥
( 1

p+
− δ̄C ′2

α0

)
ρ1,α(·),p+(·)(u)−M

≥
( 1

p+
− δ̄C ′2

α0

)
‖u‖p

−

1,α(·),p+(·) −M.

Therefore, by assumption (H8), as ‖u‖1,α(·),p+(·) → +∞, then J(u) → +∞, i.e. J is
coercive and so, there exists c ∈ R such that J(u) ≥ c.

If ‖u‖1,α(·),p+(·) ≤ 1, then

J(u) ≥ 1

p+
ρ1,α(·),p+(·)(u)− δ̄C ′2

α0
ρα(·),p+(·)(u)−M

≥ − δ̄C
′
2

α0
ρα(·),p(·)(u)−M ≥ −M > −∞.

Thus, J is bounded from below.

We can now give the proof of Theorem 3.4.

Proof of Theorem 3.4. By Proposition 3.7, J has a minimizer which is a weak solution
of (3.2). In order to complete the proof of Theorem 3.4, we will show that every weak
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solution u is homoclinic, i.e u(k)→ 0 as k → +∞. Let u be a weak solution of problem
(3.2). Then, as u ∈W 1,p(·)

0,+,α(·), we get

+∞∑

k=1

α0|u(k)|p(k) ≤
+∞∑

k=1

α(k)|u(k)|p(k) < +∞.

Let S1 = {k ∈ Z : |u(k)| < 1} and S2 = {k ∈ Z : |u(k)| ≥ 1}. S2 is a finite set, then

+∞∑

k=1

|u(k)|p(k) =
∑

k∈S1

|u(k)|p(k) +
∑

k∈S2

|u(k)|p(k) ≤
∑

k∈S1

|u(k)|p(k) +R < +∞.

As a consequence,
∑

k∈S1

|u(k)|p+ +R ≤
∑

k∈S1

|u(k)|p(k) +R.

Therefore, as S2 is a finite set, we get

+∞∑

k=1

|u(k)|p+ < +∞.

Thus, limk→+∞ |u(k)| = 0, which completes the proof.

Now, we consider the following problem:




−∆(a(k − 1,∆u(k − 1))) + α(k) |u(k)|p(k)−2 u(k) = δ(k)f(k, u(k)− 1), k ∈ Z−∗ ,

u(0) = 0, limk→−∞ u(k) = 0.

(3.6)

A weak solution of problem (3.6) is defined as follows.

Definition 3.8. A weak solution of (3.6) is a function u ∈ W1,p(·)
0,−,α(·) such that

0∑

k=−∞
a(k − 1,∆u(k − 1))∆v(k − 1) +

0∑

k=−∞
α(k) |u(k)|p(k)−2 u(k)v(k)

=
0∑

k=−∞
δ(k)f(k, u(k)− 1)v(k)

(3.7)

for any v ∈ W1,p(·)
0,−,α(·).

By mimicking the proof of Theorem 3.4, we prove the following result.

Theorem 3.9. Assume that (H1)–(H9) hold. Then, there exists at least one weak
solution of (3.6).
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Now, let us show the existence of weak heteroclinic solutions of problem (1.1).

Proof of Theorem 3.2. We define v1 = u1 + 1, where u1 is a weak solution of problem
(3.2) and v2 = u2 − 1, where u2 is a weak solution of problem (3.6). Therefore,
according to (H6) and (H9), we deduce that

u = v1χZ+ + v2χZ−

is an heteroclinic solution of problem (1.1).
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