PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Leaching of heavy metals from thermal treatment municipal sewage sludge fly ashes

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An increasing number of municipal sewage treatment plants in Poland, desirable from an environmental perspective, raises the problem of managing the growing volume of sewage sludge. The thermal treatment of municipal sewage sludge (TTMSS) method, by greatly reducing the waste volume, increases the heavy metal concentration in fly ash (primary, end product of the treatment process), which may constitute a risk factor when attempting to utilize them economically. The research paper concentrates on determining the TTMSS fly ash heavy metal leaching level. For this purpose, ash samples were subjected to leaching with the batch and percolation tests, and the heavy metal content in eluates was determined by the FAAS method. The obtained results served as a base to determine the level of heavy metal immobilization in the ash, the element release mechanism (percolation test), and the impact of the L/S (liquid to solid) ratio and pH on the heavy metal leaching intensity (percolation test). The conducted research indicated high immobilization of heavy metals in TTMSS fly ash, regardless of the applied study method, which corresponds to the results of other researchers. Lead was the most intensively eluted metal.
Rocznik
Strony
49--59
Opis fizyczny
Bibliogr. 37 poz., rys., tab., wykr.
Twórcy
  • Warsaw University of Technology, Poland
Bibliografia
  • 1. Anderson, M. (2002). Encouraging prospects for recycling incinerated sewage sludge ash (ISSA) into clay‐based building products. J. Chem. Technol. Biotechnol. Int. Res. Process. Environ. Clean Technol. 77, pp. 352-360.
  • 2. Benassi, L., Zanoletti, A., Depero, L.E. & Bontempi, E. (2019). Sewage sludge ash recovery as valuable raw material for chemical stabilization of leachable heavy metals. J. Environ. Manage. 245, pp. 464-470.
  • 3. Białowiec, A., Janczukowicz, W. & Krzemieniewski, M. (2009). Possibilities of management of waste fly ashes from sewage sludge thermal treatment in the aspect of legal regulations. Rocznik Ochrony Środowiska. 11, pp. 959-971.
  • 4. Bochenek, D., Dzik, M., Górska, A., Kiełczykowska, A., Kulasza, A., Nowakowska, B., Pawłowska, T., Rudnicka, M., Sulik, J., Szondelmejer, K., Wojciechowska, M., Wrzosek, A. & Wrzosek, P. (2018). Environment 2018. Warsaw.
  • 5. Borowski, B. (2011). Processing of ashes from sewage sludge combustion for building material. Inżynieria Ekologiczna, pp. 251-258.
  • 6. Boruszko, D. (2001). Processing and neutralization of sewage sludge. Lab Exerc. Białystok Wyd Dydakt. Wydz Budow Inż Środ.
  • 7. Bourg, A.C.M. & Loch, J.P.G. (1995). Mobilization of heavy metals as affected by pH and redox conditions. In: Biogeodynamics of Pollutants in Soils and Sediments. Springer, pp. 87-102.
  • 8. CEN/TS 14405:2004 Characterization of waste - Leaching behaviour tests - Up-flow percolation test (under specified conditions), 2004.
  • 9. Chen, M., Blanc, D., Gautier, M., Mehu, J. & Gourdon, R. (2013). Environmental and technical assessments of the potential utilization of sewage sludge ashes (SSAs) as secondary raw materials in construction. Waste Manag. 33, pp. 1268-1275.
  • 10. Cyr, M., Coutand, M. & Clastres, P. (2007). Technological and environmental behavior of sewage sludge ash (SSA) in cement-based materials. Cem. Concr. Res. 37, pp. 1278-1289.
  • 11. Cyr, M., Idir, R. & Escadeillas, G. (2012). Use of metakaolin to stabilize sewage sludge ash and municipal solid waste incineration fly ash in cement-based materials. J. Hazard. Mater. 243, pp. 193-203.
  • 12. Delay, M., Lager, T., Schulz, H.D. & Frimmel, F.H. (2007). Comparison of leaching tests to determine and quantify the release of inorganic contaminants in demolition waste. Waste Manag. 27, pp. 248-255.
  • 13. Donatello, S., Tyrer, M. & Cheeseman, C.R. (2010). EU landfill waste acceptance criteria and EU Hazardous Waste Directive compliance testing of incinerated sewage sludge ash. Waste Manag. 30, pp. 63-71.
  • 14. EN 12457-2:2002 Characterisation of waste - Leaching – Compliance test for leaching of granular waste materials and sludges – Part 2: One stage batch test at a liquid to solid ratio of 10 l/kg for materials with particle size below 4 mm (without or with s), 2002.
  • 15. EN 450-1:2012 Fly ash for concrete. Definition, specifications and conformity criteria, 2012.
  • 16. Falacinski, P. & Szarek, Ł. (2016). Possible applications of hardening slurries with fly ash from thermal treatment of municipal sewage sludge in environmental protection structures. Arch. Hydro-Engineering Environ. Mech. 63, pp. 47-61.
  • 17. Franz, M., 2008. Phosphate fertilizer from sewage sludge ash (SSA). Waste Manag. 28, pp. 1809-1818.
  • 18. Grobelak, A., Grosser, A., Kacprzak, M. & Kamizela, T., (2019). Sewage sludge processing and management in small and medium-sized municipal wastewater treatment plant-new technical solution. J. Environ. Manage. 234, pp. 90-96.
  • 19. Hudziak, G., Gorazda, K. & Wzorek, Z. (2012). Główne kierunki w zastosowaniu popiołów po termicznej obróbce osadów ściekowych. Tech. Trans. Chem. 109, pp. 41-50.
  • 20. Lam, C.H., Barford, J.P. & McKay, G. (2010). Utilization of incineration waste ash residues in Portland cement clinker. Chem. Eng. 21, pp. 757-762.
  • 21. Li, J., Xue, Q., Fang, L. & Poon, C.S. (2017). Characteristics and metal leachability of incinerated sewage sludge ash and air pollution control residues from Hong Kong evaluated by different methods. Waste Manag. 64, pp. 161-170.
  • 22. Lin, D.F., Chang, W.C., Yuan, C. & Luo, H.L. (2008). Production and characterization of glazed tiles containing incinerated sewage sludge. Waste Manag. 28, pp. 502-508.
  • 23. Lin, K.-L. & Lin, C.-Y. (2005). Hydration characteristics of waste sludge ash utilized as raw cement material. Cem. Concr. Res. 35, pp. 1999-2007.
  • 24. Łukawska, M., 2014. Speciation analysis of phosphorus in sewage sludge after thermal utilization of sludge. Inżynieria i Ochr. Środowiska 17.
  • 25. Lynn, C.J., Dhir, R.K. & Ghataora, G.S. (2018). Environmental impacts of sewage sludge ash in construction: Leaching assessment. Resour. Conserv. Recycl. 136, pp. 306-314.
  • 26. Mattenberger, H., Fraißler, G., Brunner, T., Herk, P., Hermann, L. & Obernberger, I. (2008). Sewage sludge ash to phosphorus fertiliser: variables influencing heavy metal removal during thermochemical treatment. Waste Manag. 28, pp. 2709-2722.
  • 27. Naka, A., Yasutaka, T., Sakanakura, H., Kalbe, U., Watanabe, Y., Inoba, S., Takeo, M., Inui, T., Katsumi, T. & Fujikawa, T. (2016). Column percolation test for contaminated soils: Key factors for standardization. J. Hazard. Mater. 320, pp. 326-340.
  • 28. National Waste Management Plan 2022, 2016. Council of Ministers, Warsaw.
  • 29. Nowak, B., Aschenbrenner, P. & Winter, F. (2013). Heavy metal removal from sewage sludge ash and municipal solid waste fly ash-a comparison. Fuel Process. Technol. 105, pp. 195-201.
  • 30. Rutkowska, G., Fronczyk, J. & Wichowski, P. (2018). Research on the Possibility of Using Fly Ashes from Combustion of Municipal Sewage Sludge on Properties of Ordinary Concretes. Rocz. Ochr. Środowiska, 20. pp. 1113-1128.
  • 31. Szarek, Ł., 2019. The influence of addition fly ash from thermal treatment of municipal sewage sludge on selected hardening slurries properties. In: Monitoring and Safety of Hydrotechnical Constructions. pp. 329-340.
  • 32. Szarek, Ł., Wojtkowska, M., 2018. Properties of fly ash from thermal treatment of municipal sewage sludge in terms of EN 450-1. Arch. Environ. Prot. 44.
  • 33. Tessier, A., Campbell, P.G.C. & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 51, pp. 844-851.
  • 34. Van der Sloot, H.A. & Dijkstra, J.J. (2004). Development of horizontally standardized leaching tests for construction materials: a material based or release based approach?: Identical leaching mechanisms for different materials.
  • 35. Van der Sloot, H.A. & Mulder, E. (2002). Test methods to assess environmental properties of aggregates in different applications: the role of EN 1744-3. Energieonderzoek Cent. Ned. ECN.
  • 36. Van der Sloot, H.A., Van Zomeren, A., Meeussen, J.C.L., Hoede, D., Rietra, R.P.J.J., Stenger, R., Lang, T., Schneider, M., Spanka, G., Stoltenberg-Hansson, E., Lerat, A. & Dath, P. (2011). Environmental Criteria for cement-based products. ECN.
  • 37. Wainwright, P.J. & Cresswell, D.J.F. (2001). Synthetic aggregates from combustion ashes using an innovative rotary kiln. Waste Manag. 21, pp. 241-246.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b52d26bc-8901-4750-8de3-65719b425d6c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.