PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

From set-valued dynamical processes to fractals

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We present a general theory of topological semiattractors and attractors for set-valued semigroups. Our results extend and unify those previously obtained by Lasota and Myjak. In particular, we naturally generalize the concept of semifractals for the systems acting on Hausdorff topological spaces. The main tool in our analysis is the notion of topological (Kuratowski) limits. We especially focus on the forward asymptotic behavior of discrete set-valued processes generated by sequences of iterated function systems. In this context, we establish sufficient conditions for the existence of fractal-type limit sets.
Rocznik
Strony
601--621
Opis fizyczny
Bibliogr. 25 poz.
Twórcy
  • AGH University of Krakow, Faculty of Applied Mathematics, al. A. Mickiewicza 30, 30–059 Kraków, Poland
  • AGH University of Krakow, Faculty of Applied Mathematics, al. A. Mickiewicza 30, 30–059 Kraków, Poland
Bibliografia
  • [1] M.F. Barnsley, A. Vince, Developments in fractal geometry, Bull. Math. Sci. 3 (2013), 299–348.
  • [2] G. Beer, Topologies on Closed and Closed Convex Sets, Springer Dordrecht, 1993.
  • [3] F. Browder, On the convergence of successive approximations for nonlinear functional equations, Indag. Math. 30 (1968), 27–35.
  • [4] R.S. Burachik, A.N. Iusem, Set-Valued Mappings and Enlargements of Monotone Operators, Springer, 2008.
  • [5] H. Cui, P.E. Kloeden, Invariant forward attractors of non-autonomous random dynamical systems, J. Differential Equ. 265 (2018), no. 12, 6166–6186.
  • [6] H. Cui, P.E. Kloeden, Tail convergence of pullback attractors for asymptotically converging multi-valued dynamical system, Asymptotic Anal. 112 (2019), no. 3–4, 165–184.
  • [7] H. Cui, P.E. Kloeden, Comparison of attractors of asymptotically equivalent difference equations, Springer Pros. Math. Stat. 287 (2019), 31–50.
  • [8] G. Guzik, Semiattractors of set-valued semiflows, J. Math. Anal. Appl, 435 (2016), no. 2, 1321–1334.
  • [9] G. Guzik, On a class of cocycles having attractors which consists of singletons, Topol. Methods Nonlinear Anal. 50 (2017), no. 2, 727–739.
  • [10] G. Guzik, On supports of evolution systems of measures for converging in law non-homogenous Markov processes, Topol. Methods Nonlinear Anal. 55 (2020), no. 1, 19–36.
  • [11] G. Guzik, Boundedness of Lasota–Myjak attractors for iterated function systems, submitted.
  • [12] J.E. Hutchinson, Fractals and self similarity, Indiana Univ. Math. J. 30 (1981), 713–747.
  • [13] J. Jachymski, I. Jóźwik, Nonlinear contractive conditions: a comparison and related problems, Banach Center Publ. 77 (2007), 123–146
  • [14] R. Kapica, J. Morawiec, Refinement equations and Feller operators, Integr. Equ. Oper. Theory 70 (2011), 323–331.
  • [15] K. Kuratowski, Wstęp do teorii mnogości i topologii, PWN, Warszawa, 1962 [in Polish].
  • [16] A. Lasota, J. Myjak, Semifractals, Bull. Pol. Acad. Sci. Math. 44 (1996), no. 1, 5–21.
  • [17] A. Lasota, J. Myjak, Attractors of multifunctions, Bull. Pol. Acad. Sci. Math. 48 (2000), no. 3, 319–334.
  • [18] K. Leśniak, N. Snigireva, F. Strobin, A Vince, Transition phenomena for the attractor of an iterated function system, Nonlinearity 35 (2022), no. 10, 5396–5426.
  • [19] G. Manjunath, H. Jaeger, The dynamics of random difference equations is remodeled by closed relations, SIAM J. Math. Anal. 46 (2014), no. 1, 459–483.
  • [20] S. Mrówka, On the convergence of nets of sets, Fundamenta Math. 45 (1958), 247–253.
  • [21] M. Nowak, Pointwise attractors which are not strict, Ind. Math. 35 (2024), no. 1, 119–130.
  • [22] L. Rempe-Gillen, M. Urbański, Non-autonomous conformal iterated function systems and Moran-set constructions, Trans. Amer. Math. Soc. 368 (2016), no. 3, 1979–2017.
  • [23] F. Strobin, Contractive iterated function systems enriched with nonexpansive maps, Results Math. 76 (2021), Article no. 153.
  • [24] M. Tyran-Kamińska, Stability of Markov processes nonhomogenous in time, Ann. Pol. Math. 71 (1999), no. 1, 47–59.
  • [25] A. Vince, Thresholds for one-parameter families of affine iterated function systems, Nonlinearity 33 (2020), no. 12, 6541–6563.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b52c7334-6941-43ad-b209-bb610ce6cfb1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.