PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical analysis of stress and strain in specimens with rectangular cross-section subjected to torsion and bending with torsion

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents an analysis of the state of stress and crack tip opening displacement (strain) in specimens with rectangular cross-section subjected to torsion and combined bending with torsion. The specimens were made of the EN AW-2017A aluminium alloy. The specimens had an external unilateral notch, which was 2 mm deep and its radius was 22.5 mm. The tests were performed at constant moment amplitude MT=MBT= 15.84 N.m and under stress ratio R= -1. The exemplary results of numerical computations being obtained by using the FRANC3D software were shown in the form of stress and crack tip opening displacement (CTOD) maps. The paper presents the differences of fatigue cracks growth under torsion and bending with torsion being derived by using the FRANC3D software.
Rocznik
Strony
5--11
Opis fizyczny
Bibliogr. 19 poz., rys., tab., wykr.
Twórcy
autor
  • Faculty of Mechanical Engineering, Department of Mechanics and Machine Design, Opole University of Technology, ul. Mikołajczyka 5, 45-271 Opole, Poland
  • Faculty of Mechanical Engineering, Department of Mechanics and Machine Design, Opole University of Technology, ul. Mikołajczyka 5, 45-271 Opole, Poland
autor
  • Faculty of Mechanical Engineering, Department of Mechanics and Machine Design, Opole University of Technology, ul. Mikołajczyka 5, 45-271 Opole, Poland
Bibliografia
  • 1. Becker A.A. (1992), The boundary element method in engineering, McGraw – Hill International, New York.
  • 2. Brighenti R., Carpinteri A., Vantadori S. (2012), Fatigue life assessment under a comlpex multiaxial load history: an approach based on damage mechanics, Fatigue & Fracture of Engineering Materials & Structures, Vol. 35, 141-153.
  • 3. Derpeński Ł., Seweryn A. (2007), Numerical analysis of fracture for specimens with notches made of elasto-plastic material, Acta Mechanica et Automatica, Vol. 1 (1), 27-30 (in Polish).
  • 4. Döring R., Hoffmeyer J., Seeger T., Vormwald M. (2006), Short fatigue crack growth nonproportional multiaxial elastic-plastic strains, International Journal of Fatigue, Vol. 28 (9), 972-982.
  • 5. Duchaczek A., Mańko Z. (2012), Assessment of direct method of calculating stress intensity factor, Journal of Science of the gen. Tadeusz Kosciuszko Military Academy of Land Forces, No. 3 (165), 336-346 (in Polish).
  • 6. Faszynka S., Rozumek D. (2014), Application of the FRANC3D software for crack growth calculations, Mechanik, No. 11, 932-934 (in Polish).
  • 7. Faszynka S., Rozumek D., Lewandowski J. (2015), Crack growth path in specimens with rectangular section under bending with torsion, Solid State Phenomena, Vol. 224, 133-138.
  • 8. Kleiber M. (1995), Computational methods in mechanics of solids, Warsaw, PWN (in Polish).
  • 9. Rozumek D., Hepner M., Faszynka S. (2015),Fatigue tests of PA6 and PA7 alloys subjected to bending without and after precipitation hardening, Mechanik, No. 3, 246-249 (in Polish).
  • 10. Rozumek D., Macha E. (2006), Elastic-plastic fatigue crack growth in 18G2A steel under proportional bending with torsion loading,Fatigue & Fracture of Engineering Materials & Structures, Vol. 29 (2), 135-145.
  • 11. Rozumek D., Macha E.(2009), J-integral in the description of fatigue crack growth rate induced by different ratios of torsion to bending loading in AlCu4Mg1, Mat.-wiss. u. Werkstofftech., Vol. 40 (10), 743-749.
  • 12. Rusiński E. (2002), Design principles supporting structures of motor vehicles, Oficyna Wydawnicza PolitechnikiWrocławskiej, Wrocław (in Polish).
  • 13. Seweryn A., (2002),Modeling of singular stress fields using finite element method,Int. Journal of Solids and Structures, Vol. 39 (18), 4787-4804.
  • 14. Susmel L., Taylor D. (2007), Non-propagating cracks and high-cycle fatigue failures in sharply notched specimens under in-phase Mode I and II loading, Engineering Failure Analysis, Vol. 14, 861-876.
  • 15. Szusta J., Seweryn A. (2010), Fatigue damage accumulation modelling in the range of complex low-cycle loadings – The strain appoach and its experimental verification on the basis of EN AW- 2007 aluminium alloy, International Journal of Fatigue, Vol. 33 (2), 255-264.
  • 16. Thum A., Petersen C., Swenson O. (1960), Deformation, stress and notch effect, VDI, Duesseldorf (in German).
  • 17. Zappalorto M., Berto F., Lazzarin P. (2011), Practical expressions for the notch stress concentration factors of round bars under torsion, International Journal of Fatigue, Vol. 33 (3), 382-395.
  • 18. Zienkiewicz O. C., Taylor R. L. (2000), The finite element method, Butterworth Heinemann, Vol. 1-3, Oxford.
  • 19. www.cfg.cornell.edu/software/software.htm.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b52b973a-0f7f-4d9c-a770-1f4038b44d22
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.