PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Review of peak signal detection methods in nanosecond pulses monitoring

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper is a review of analog and digital electronics dedicated to monitor nanosecond pulses. Choosing the optimal peak detector construction depends on many factors for example precision, complexity, or costs. The work shows some virtues and limitations of selected peak detection methods, for example standard peak detector with rectifier, sample and hold circuit with triggering units and ADC fast acquisition. However, the main attention is paid to problems of results from effective triggering signal for sample and hold operation. The obtained results allow for designing a peak detector construction as an alternative for costly and very complex fast acquisition systems based on ADC and FPGA technologies.
Rocznik
Strony
203--218
Opis fizyczny
Bibliogr. 46 poz., rys., tab., wykr., wzory
Twórcy
  • Military University of Technology, Institute of Optoelectronics, Gen. S. Kaliskiego 2 Str., 00-908 Warsaw, Poland
  • Military University of Technology, Institute of Optoelectronics, Gen. S. Kaliskiego 2 Str., 00-908 Warsaw, Poland
  • Military University of Technology, Institute of Optoelectronics, Gen. S. Kaliskiego 2 Str., 00-908 Warsaw, Poland
  • Military University of Technology, Institute of Optoelectronics, Gen. S. Kaliskiego 2 Str., 00-908 Warsaw, Poland
  • Military University of Technology, Institute of Optoelectronics, Gen. S. Kaliskiego 2 Str., 00-908 Warsaw, Poland
Bibliografia
  • [1] Stacewicz, T., Bielecki, Z., Wojtas, J., Magryta, P., Mikolajczyk, J., Szabra, D. (2016). Detection of disease markers in human breath with laser absorption spectroscopy. Opto-electronics Review, 24(2), 82-94.
  • [2] Wojtas, J., Bielecki, Z., Stacewicz, T., Mikolajczyk, J., Mędrzycki, R., Rutecka, B. (2011). Application of Quantum Cascade Lasers in Nitric Oxide and Nitrous Oxide Detection. Acta Physica Polonica A, 120(4), 794-797.
  • [3] Stacewicz, T., Wojtas, J., Bielecki, Z., Nowakowski, M., Mikolajczyk, J., Mędrzycki, R., Rutecka, B. (2012). Cavity ring down spectroscopy: detection of trace amounts of substance. Opto-electronics Review, 20(1), 53-60.
  • [4] Wojtas, J., Stacewicz, T., Bielecki, Z., Rutecka, B., Mędrzycki, R., Mikolajczyk, J. (2013). Towards optoelectronic detection of explosives. Opto-electronics Review, 21(2), 210-219.
  • [5] Rogalski, A., Bielecki, Z., Mikolajczyk, J. (2017). Detection of optical radiation. Dakin, J.P., Brown R. (eds.). Handbook of Optoelectronics: Concepts, Devices, and Techniques. Boca Raton: CRC Press, 65-124.
  • [6] Mikolajczyk, J., Bielecki, Z., Bugajski, M., Piotrowski, J., Wojtas, J., Gawron, W., Szabra, D. (2017). Analysis of free-space optics development. Metrology and Measurement Systems, 24(4), 653-674.
  • [7] Bardelli, L., Poggi, G. (2006). Digital-sampling systems in high-resolution and wide dynamic-range energy measurements: Comparison with peak sensing ADCs. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 560(2), 517-523.
  • [8] Henniger, H., Wilfert, O. (2010). An Introduction to Free-space Optical Communications. Radioengenineering, 19(2), 203-212.
  • [9] Graeme, J., (1995). Photodiode Amplifiers OP AMP Solutions. New York: McGraw-Hill Education.
  • [10] Brillant, A. (2008). Laser Power and Temperature Control Loops. Digital and Analog Fiber Optic Communications for CATV and FTTx Applications. Bellingham: SPIE, 591-625.
  • [11] Barna, A., Bohus, J. (2015). Active stabilization of the beam pointing of a high-power KrF laser system. Metrology and Measurement Systems, 22(1), 165-172.
  • [12] Barna, A., Földes, I.B., Gingl, Z., Mingesz, R. (2013). Compact energy measuring system for short pulse lasers. Metrology and Measurement Systems, 20(2), 183-190.
  • [13] Haas, W., Dullenkopf, P. (1986). Novel Peak Amplitude and Time Detector for Narrow Pulse Signals. IEEE Transactions on Instrumentation and Measurement, IM-35(4), 547-550.
  • [14] Petrovi, P.B. (2013). A New Precision Peak Detector/Full-Wave Rectifier. Journal of Signal and Information Processing, 4(1), 72-81.
  • [15] De Geronimo, G., Kandasamy, A., O’Connor, P. (2002). Analog peak detector and derandomizer for high-rate spectroscopy. IEEE Transactions on Nuclear Science, 49(4), 1769-1773.
  • [16] Jordanov, V.T., Hall, D.L., Kastner, M. (2002). Digital Peak Detector with Noise Threshold. Proc. of IEEE Nuclear Science Symposium and Medical Imaging Conference, 1, 140-142.
  • [17] Jordan, J.R., Manook, B.A. (1981). Correlation-Function Peak Detector. IEE Proceedings E - Computers and Digital Techniques, 128(2), 74-78.
  • [18] Wright, J. (1992). Peak Detectors Gain in Speed and Performance. Linear Technology Design Note 61.
  • [19] Bhagat, S. (2015). High Speed Peak Detection. International Journal of Engineering Research and General Science, 3(6), 442-446.
  • [20] Dlugosz, R., Iniewski, K. (2007). High-precision analogue peak detector for X-ray imaging applications. Electronics Letters, 43(8), 440-441.
  • [21] Feucht, D.L. (1990). Handbook of Analog Circuit Design. Academic Press.
  • [22] Meyer, R.G. (1995). Low-Power Monolithic RF Peak Detector Analysis. IEEE Journal of Solid-State Circuits, 32(1), 65-67.
  • [23] Jayaraman, K., Khan, Q.A., Chiang, P., Chi, B. (2009). Design and analysis of 1-60 GHz, RF CMOS peak detectors for LNA calibration. Proc. International Symposium on VLSI Design, Automation and Test, 311-314.
  • [24] Pelgrom M. (2013). Analog-to-Digital Conversion. New York: Springer-Verlag, 155-174.
  • [25] Cheuk, J., Wong, W. (2001). CMOS Sample-and-Hold Circuits ECE 1352 Reading Assignment. Toronto: University of Toronto.
  • [26] Buckens, P., Veatch, M. (1992). A High Performance Peak-Detect & Hold Circuit for Pulse Height Analysis. IEEE Transactions on Nuclear Science, 39(4), 753-757.
  • [27] Kruiskamp, M., Leenaerts, D. (1994). A CMOS Peak Detect Sample and Hold Circuit. IEEE Transactions on Nuclear Science, 41(1), 295-298.
  • [28] Chow, H., Hor, Z. (2008). A High Performance Peak Detector Sample and Hold Circuit for Detecting Power Supply Noise. Proc. of APCCAS 2008 - 2008 IEEE Asia Pacific Conference on Circuits and Systems, 672-675.
  • [29] Chow, H.C., Wang, I.H. (2002). High performance automatic gain control circuit using a S/H peak-detector for ASK receiver. Proc. of the 9th IEEE International Conference on Electronics, Circuits and Systems, 2, 429-432.
  • [30] Mandal, S., Dasgupta, S. (2018). Modified CMOS Peak Detector and Sample Hold Circuit for Biomedical Applications. Proc. of IEEE Conference on Emerging Devices and Smart Systems, 113-116.
  • [31] Gupta, S.K., Hayashi, Y., Jain, A., Karthikeyan, S., Kawakami, S., Ravindran, K.C., Tonwar, S.C. (2005). A high-performance, low-cost, leading edge discriminator. Pramana - Journal of Physics, 65(2), 273-283.
  • [32] Zheng, R., Wu, G. (2012). Constant fraction discriminator in pulsed time-of-flight laser range finding. Frontiers of Optoelectronics, 5(2), 182-186.
  • [33] Zhao, P., Yao, P., Wang, X., Tu, B., Zhang Y. (2015). A high performance constant fraction discriminator for pulsed laser proximity fuze. Proc. of Conferences of the Photoelectronic Technology Committee of the Chinese Society of Astronautics, Part II, 9522.
  • [34] Costin, D.A.N., Opris, P. (1995). High speed peak detector for glitch-catching used in digital storage scopes. Proc. of IEEE International Semiconductor Conference, 233-236.
  • [35] Li, X., Wang, H., Yang, B., Huyan, J., Xu, L. (2017). Influence of time-pickoff circuit parameters on LiDAR range precision. Sensors (Switzerland), 17(10).
  • [36] Hao, L., Zhang, Y., Na, Y., (2013). Research on amplification and peak-holding circuits of nanosecond light pulse. Proc. of Sixth International Symposium on Precision Mechanical Measurements, 8916.
  • [37] Zhang, W., Zhang, H., Zhang, X., Chen, Y. (2016). Laser pulse peak holding circuit for low cost laser tracking applications. Advanced Laser Manufacturing Technology, 10153.
  • [38] Dabas, A., Grover, K. (2018). Peak Detector using Low Voltage Operational Trans resistance Amplifier. International Journal of Engineering Trends and Technology, 58(3), 109-112.
  • [39] Takahashi, H., Kodama, S., Kawarabayashi, J., Iguchi, T., Nakazawa, M. (1993). A new pulse height analysis system based on fast ADC digitizing technique. IEEE Transactions on Nuclear Science. 40(4), 626-629.
  • [40] Bidégaray-Fesquet, B., Fesquet, L. (2016). Levels, peaks, slopes... which sampling for which purpose?. Proc. of the 2nd Second International Conference on Event-based Control, Communication, and Signal Processing, 1-6.
  • [41] Singhai, P., Roy, A., Dhara, P., Chatterjee, S. (2012). Digital pulse processing techniques for high resolution amplitude measurement of radiation detector. Proc. of the 9th International Workshop on Personal Computers and Particle Accelerator Controls, 279-281.
  • [42] Wang, P., Wang, Z. (2011). Improvement of peak detection for digital storage oscilloscope. Proc. of the IEEE 10th International Conference on Electronic Measurement & Instruments, 222-225.
  • [43] Zet, C., Catalin, D., Fosalau, C. (2005). An FPGA Based Peak Detector for Magnetostrictive Current Sensors. Proc. of the 14th Symposium on New Technologies in Measurement and Instrumentation and 10th Workshop on ADC Modelling and Testing, 179-182.
  • [44] Krehlik, P., Śliwczyński, Ł. (2002). High-speed peak detector uses ECL comparator. EDN – Design Ideas, 47(21), 98-100.
  • [45] Achtenberg, K., Mikołajczyk, J., Szabra, D., Prokopiuk, A., Bielecki, Z. (2019). Peak detection unit for Free-Space-Optics receiver. Metrology and Measurement Systems, 26(2), 377-385.
  • [46] Achtenberg, K., Mikołajczyk, J., Szabra, D., Prokopiuk, A., Bielecki, Z. (2019). Optical pulse monitoring unit for Free Space Optics. Opto-Electronics Review, 27(3), 291-297.
Uwagi
EN
1. This work was prepared in the frame of the grant UGB/22-786/2020/WAT.
PL
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b520fb36-429a-4808-bdb3-5c40b738bc06
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.