Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The Internet of Things (IoT) and cloud-based collaborative platforms have emerged as new infrastructures over the recent decades. The classification of network traffic in terms of benign and malevolent traffic is indispensable for IoT/cloud-based collaborative platforms for optimally utilizing channel capac ity for transmitting benign traffic and blocking malicious traffic. The traffic classification mechanism should be dynamic and capable enough for classifying network traffic in a quick manner so that malevolent traffic can be identified at earlier stages and benign traffic can be speedily channelized to the destined nodes. In this paper, we present a deep-learning recurrent LSTM RNet-based technique for classifying traffic over IoT/cloud platforms using the Word2Vec approach. Machine-learning techniques (MLTs) have also been employed for comparing the performance of these techniques with the proposed LSTM RNet classification method. In the proposed research work, network traffic is clas sified into three classes: Tor-Normal, NonTor-Normal, and NonTor-Malicious traffic. The research outcome shows that the proposed LSTM RNet accurately classifies such traffic and also helps reduce network latency as well as enhance data transmission rates and network throughput.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
367–385
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
autor
- Department of Computer Sc. & Engg, B.S. Abdur Crescent Institute of Science & Technology, Tamil Nadu, India
autor
- Department of Computer Sc. & Engg, B.S. Abdur Crescent Institute of Science & Technology, Tamil Nadu, India
Bibliografia
- [1] Abdelmoniem A.M., Bensaou B., Abu A.J.: SICC: SDN-based incast congestion control for data centers. In: 2017 IEEE International Conference on Communi cations (ICC), pp. 1–6, 2017. doi: 10.1109/ICC.2017.7996826.
- [2] Abdelmoniem A.M., Bensaou B., Abu A.J.: Mitigating incast-TCP congestion in data centers with SDN, Annals of Telecommunications, vol. 73(3), pp. 263–277, 2018. doi: 10.1007/s12243-017-0608-1.
- [3] Auld T., Moore A.W., Gull S.F.: Bayesian Neural Networks for Internet Traffic Classification, IEEE Transactions on Neural Networks, vol. 18(1), pp. 223–239, 2007. doi: 10.1109/TNN.2006.883010.
- [4] Bermolen P., Mellia M., Meo M., Rossi D., Valenti S.: Abacus: Accurate behavioral classification of P2P-TV traffic, Computer Networks, vol. 55(6), pp. 1394–1411, 2011. doi: 10.1016/j.comnet.2010.12.004.
- [5] Botta A., Donato de W., Persico V., Pescap´e A.: Integration of Cloud computing and Internet of Things: A survey, Future Generation Computer Systems, vol. 56, pp. 684–700, 2016. doi: 10.1016/j.future.2015.09.021.
- [6] Breiman L.: Bagging Predictors, Machine Learning, vol. 24(2), pp. 123–140, 1996.
- [7] Chamasemani F.F., Singh Y.P.: Multi-class Support Vector Machine (SVM) Classifiers – An Application in Hypothyroid Detection and Classification. In: 2011 Sixth International Conference on Bio-Inspired Computing: Theories and Applications, pp. 351–356, 2011. doi: 10.1109/BIC-TA.2011.51
- [8] Cortes C., Vapnik V.: Support-vector networks, Machine Learning, vol. 20(3), pp. 273–297, 1995.
- [9] Crotti M., Dusi M., Gringoli F., Salgarelli L.: Traffic Classification through Simple Statistical Fingerprinting, ACM SIGCOMM Computer Communication Review, vol. 37(1), pp. 5–16, 2007.
- [10] Dainotti A., Pescape A., Sansone C.: Early Classification of Network Traffic through Multi-classification. In: J. Domingo-Pascual, Y. Shavitt, S. Uhlig (eds.), Traffic Monitoring and Analysis. TMA 2011, Lecture Notes in Computer Science, vol. 6613, pp. 122–135, Springer, Berlin, Heidelberg, 2011.
- [11] Draper-Gil G., Lashkari A.H., Islam-Mamun M.S., Ghorbani A.A.: Characterization of Encrypted and VPN Traffic using Time-related Features. In: Proceedings of the 2nd International Conference on Information Systems Security and Privacy (ICISSP 2016), pp. 407–414, 2016. doi: 10.5220/0005740704070414.
- [12] Finamore A., Mellia M., Meo M., Rossi D.: KISS: Stochastic Packet Inspection Classifier for UDP Traffic, IEEE/ACM Transactions on Networking, vol. 18(5), pp. 1505–1515, 2010.
- [13] Gubbi J., Buyya R., Marusic S., Palaniswami M.: Internet of Things (IoT): A vision, architectural elements, and future directions, Future Generation Computer Systems, vol. 29(7), pp. 1645–1660, 2013. doi: 10.1016/j.future.2013.01.010.
- [14] Hakiri A., Gokhale A., Berthou P., Schmidt D.C., Gayraud T.: Software-Defined Networking: Challenges and research opportunities for Future Internet, Computer Networks, vol. 75(Part A), pp. 453–471, 2014. doi: 10.1016/j.comnet.2014.10.015.
- [15] Jouet S., Perkins C., Pezaros D.: OTCP: SDN-managed congestion control for data center networks. In: NOMS 2016 – 2016 IEEE/IFIP Network Operations and Management Symposium, pp. 171–179, 2016. doi: 10.1109/NOMS.2016.7502810.
- [16] Kim H., Claffy K., Fomenkov M., Barman D., Faloutsos M., Lee K.: Inter net traffic classification demystified: myths, caveats, and the best practices. In: CoNEXT ’08: Proceedings of the 2008 ACM CoNEXT Conference, pp. 1–12, ACM, 2008. doi: 10.1145/1544012.1544023.
- [17] Lee I., Lee K.: The Internet of Things (IoT): Applications, investments, and challenges for enterprises, Business Horizons, vol. 58(4), pp. 431–440, 2015. doi: 10.1016/j.bushor.2015.03.008.
- [18] Li X., Freedman M.J.: Scaling IP Multicast on Datacenter Topologies. In: CoNEXT ’13: Proceedings of the ninth ACM conference on Emerging networking experiments and technologies, pp. 61–72, 2013. doi: 10.1145/2535372.2535380.
- [19] Mechtri M., Houidi I., Louati W., Zeghlache D.: SDN for Inter Cloud Networking. In: 2013 IEEE SDN for Future Networks and Services (SDN4FNS), pp. 1–7, 2013.
- [20] Moore A.W., Papagiannaki K.: Toward the Accurate Identification of Network Applications. In: C. Dovrolis (ed.), PAM 2005: Passive and Active Network Measurement, Lecture Notes in Computer Science, vol. 3431, pp. 41–54, Springer, Berlin, Heidelberg, 2005. doi: 10.1007/978-3-540-31966-5 4.
- [21] Moore A.W., Zuev D., Crogan M.L.: Discriminators for use in flow-based classification, pp. 1–16, Research Reports, Queen Mary Univeristy of London, Department of Computer Science, 2005. https://www.cl.cam.ac.uk/∼awm22/publication/moore2005discriminators.pdf.
- [22] Petri I., Zou M., Zamani A.R., Diaz-Montes J., Rana O., Parashar M.: Integrating Software Defined Networks within a Cloud Federation. In: 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, pp. 179–188, 2015. doi: 10.1109/CCGrid.2015.11.
- [23] Qi Y., Xu L., Yang B., Xue Y., Li J.: Packet Classification Algorithms: From Theory to Practice. In: IEEE INFOCOM 2009, pp. 648–656, 2009. doi: 10.1109/ INFCOM.2009.5061972.
- [24] Rifai M.: Next-Generation SDN Based Networks, Ph.D. thesis, Universite Coted’Azur, 2017.
- [25] Salman O., Elhajj I., Chehab A., Kayssi A.: IoT survey: An SDN and fog com puting perspective, Computer Networks, vol. 143(6), pp. 221–246, 2018.
- [26] Sen S., Spatscheck O., Wang D.: Accurate, scalable in-network identification of P2P traffic using application signatures. In: WWW ’04: Proceedings of the 13th international conference on World Wide Web, pp. 512–521, 2004. doi:10.1145/988672.988742.
- [27] Sivanathan A., Sherratt D., Gharakheili H.H., Radford A., Wijenayake C., Vishwanath A., Sivaraman V.: Characterizing and classifying IoT traffic in smart cities and campuses. In: 2017 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 559–564, 2017. doi: 10.1109/INFCOMW. 2017.8116438.
- [28] Son J., Buyya R.: A Taxonomy of Software-Defined Networking (SDN)-Enabled Cloud Computing, ACM Computing Surveys, vol. 51(3), pp. 1–36, 2018.
- [29] Wang W., Zhu M., Wang J., Zeng X., Yang Z.: End-to-end encrypted traffic classification with one-dimensional convolution neural networks. In: 2017 IEEE International Conference on Intelligence and Security Informatics (ISI), pp. 43–48, 2017. doi: 10.1109/ISI.2017.8004872.
- [30] Wang X., Parish D.J.: Optimised Multi-stage TCP Traffic Classifier Based on Packet Size Distributions. In: 2010 Third International Conference on Communication Theory, Reliability, and Quality of Service, pp. 98–103, 2010.
- [31] Yamansavascilar B., Guvensan M.A., Yavuz A.G., Karsligil M.E.: Application identification via network traffic classification. In: 2017 International Conference on Computing, Networking and Communications (ICNC), pp. 843–848, 2017.doi: 10.1109/ICCNC.2017.7876241.
- [32] Yao H., Gao P., Wang J., Zhang P., Jiang C., Han Z.: Capsule Network Assisted IoT Traffic Classification Mechanism for Smart Cities, IEEE Internet of Things Journal, vol. 6(5), pp. 7515–7525, 2019.
Uwagi
PL
„Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).”
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b51fef8c-a0e1-4769-ad19-ca59cc61af85